YOMEDIA
NONE
  • Câu hỏi:

    Trong thí nghiệm giao thoa sóng ở mặt nước, hai nguồn kết hợp đặt tại hai điểm A và B, dao động cùng pha theo phương thẳng đứng. Trên đoạn thẳng AB quan sát được 13 điểm cực đại giao thoa. Ở mặt nước, đường tròn (C) có tâm O thuộc đường trung trực của AB và bán kính a không đồi (với 2a

    • A. 4,3a. 
    • B. 4,1a. 
    • C. 4,5a. 
    • D. 4,7a.

    Lời giải tham khảo:

    Đáp án đúng: A

    Có 13 cực đại, tức là mỗi bên có 6 vân, điều này cho ta biết \(6\lambda\lt AB\lt 7\lambda\)

    Đặt \(l=\frac{AB}{2}=x\lambda\) thì ta được \(3\lt x\lt 3\text{,}5\)

    Đường tròn (C) mà trên đó có nhiều cực đại nhất thì tâm O của nó chính là trung điểm của AB. Để có được 12 cực đại trên đường tròn, nó phải tiếp xúc với đường bậc 3 tại giao điểm với AB 

    Từ đó ta suy ra \(a=3\frac{\lambda}{2}\)

    Một điểm có tọa độ \(\left(d_1;d_2\right)\) vừa là cực đại giao thoa, vừa dao động cùng pha với các nguồn thì phải thỏa mãn

     \(d_1-d_2=k\lambda\\ d_1+d_2=n\lambda\)

    Trong đó k và n là các số nguyên cùng lẻ hoặc cùng chẵn.

    Từ hai phương trình này ta suy ra 

    \(d_1=\frac{1}{2}\left(n+k\right)\lambda\\ d_2=\frac{1}{2}\left(n-k\right)\lambda\)

    Với điều kiện thuộc đường tròn (C) nữa. Chúng ta xét tam giác có các cạnh \(d_1, d_2, AB=2l\) và trung tuyến a, công thức liên hệ là

     \(a^2=\frac{d_1^2+d_2^2}{2}-l^2\\ \frac{9}{4}=\frac{n^2+k^2}{4}-x^2 \)

    Lần lượt lấy k=0,1,2,3 và với điều kiện \(3\lt x\lt 3\text{,}5\), đồng thời nhớ rằng k với n cùng chẵn hoặc cùng lẻ, ta suy ra k=1,n=7

    Thay ngược trở lại ta được \(x=3\text{,}2\)

    khi đó 

    \(\frac{AB}{a}=\frac{2x\lambda}{\frac{3}{2}\lambda}=4\text{,}26666...\)

    ATNETWORK

Mã câu hỏi: 361309

Loại bài: Bài tập

Chủ đề :

Môn học: Vật lý

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON