YOMEDIA
NONE
  • Câu hỏi:

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm \(A\left( 1;2;7 \right), B\left( \frac{-5}{7};\frac{-10}{7};\frac{13}{7} \right)\). Gọi \(\left( S \right)\) là mặt cầu tâm I đi qua hai điểm A, B sao cho OI nhỏ nhất. \(M\left( a;b;c \right)\) là điểm thuộc \(\left( S \right)\), giá trị lớn nhất của biểu thức T=2a-b+2c là

    • A. 18
    • B. 7
    • C. 156
    • D. 6

    Lời giải tham khảo:

    Đáp án đúng: A

    Tâm I mặt cầu \(\left( S \right)\) đi qua hai điểm A, B nằm trên mặt phẳng trung trực của AB. Phương trình mặt phẳng trung trực của AB là \(\left( P \right):x+2y+3z-14=0\).

    OI nhỏ nhất khi và chỉ khi I là hình chiếu vuông góc của O trên mặt phẳng \(\left( P \right)\).

    Đường thẳng d qua O và vuông góc với mặt phẳng \(\left( P \right)\) có phương trình \(\left\{ \begin{align} & x=t \\ & y=2t \\ & z=3t \\ \end{align} \right.\)

    Tọa độ điểm I khi đó ứng với t là nghiệm phương trình

    \(t+2.2t+3.3t-14=0\Leftrightarrow t=1\Rightarrow I\left( 1;2;3 \right)\).

    Bán kính mặt cầu \(\left( S \right)\) là R=IA=4.

    Từ \(T=2a-b+2c\Rightarrow 2a-b+2c-T=0\), suy ra M thuộc mặt phẳng \(\left( Q \right):2x-y+2z-T=0\).

    Vì M thuộc mặt cầu nên:

    \(d\left( I;\left( Q \right) \right)\le R\Leftrightarrow \frac{\left| 2.1-2+2.3-T \right|}{\sqrt{{{2}^{2}}+{{\left( -1 \right)}^{2}}+{{2}^{2}}}}\le 4\Leftrightarrow \left| 6-T \right|\le 12\Leftrightarrow -6\le T\le 18\).

    ATNETWORK

Mã câu hỏi: 271644

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON