YOMEDIA
NONE
  • Câu hỏi:

    Trong không gian \(Oxyz\), cho hai điểm \(M\left( {1; - 1; - 1} \right)\) và \(N\left( {5;5;1} \right)\). Đường thẳng \(MN\) có phương trình là:

    • A. \(\left\{ {\begin{array}{*{20}{l}}
        {x = 5 + 2t} \\ 
        {y = 5 + 3t} \\ 
        {z =  - 1 + t} 
      \end{array}} \right.\)
    • B. \(\left\{ {\begin{array}{*{20}{l}}
        {x = 5 + t} \\ 
        {y = 5 + 2t} \\ 
        {z = 1 + 3t} 
      \end{array}} \right.\)
    • C. \(\left\{ {\begin{array}{*{20}{l}}
        {x = 1 + 2t} \\ 
        {y =  - 1 + 3t} \\ 
        {z =  - 1 + t} 
      \end{array}} \right.\)
    • D. \(\left\{ {\begin{array}{*{20}{l}}
        {x = 1 + 2t} \\ 
        {y =  - 1 + t} \\ 
        {z =  - 1 + 3t} 
      \end{array}} \right.\)

    Lời giải tham khảo:

    Đáp án đúng: C

    Ta có \(\overrightarrow {MN} = \left( {4;6;2} \right) = 2\left( {2;3;1} \right)\).

    Khi đó đường thẳng MN qua M và nhận \(\overrightarrow u = \left( {2;3;1} \right)\) làm VTCP có phương trình là \(\left\{ {\begin{array}{*{20}{l}} {x = 1 + 2t} \\ {y = - 1 + 3t} \\ {z = - 1 + t} \end{array}} \right.\)

    Đáp án C

    \(\left\{ {\begin{array}{*{20}{l}}
      {x = 1 + 2t} \\ 
      {y =  - 1 + 3t} \\ 
      {z =  - 1 + t} 
    \end{array}} \right.\)

    ATNETWORK

Mã câu hỏi: 431870

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
NONE
ON