YOMEDIA
NONE
  • Câu hỏi:

    Cho hình chóp đều S.ABCD có cạnh đáy bằng \(a\sqrt 3\). Tính thể tích khối chóp S.ABCD biết góc giữa cạnh bên và mặt đáy bằng \(60^0\).           

    • A. \({V_{S.ABCD}} = \frac{{3a\sqrt[3]{2}}}{2}\)
    • B. \({V_{S.ABCD}} = \frac{{3a\sqrt[3]{3}}}{4}\)
    • C. \({V_{S.ABCD}} = \frac{{3a\sqrt[3]{6}}}{2}\)
    • D. \({V_{S.ABCD}} = \frac{{a\sqrt[3]{6}}}{3}\)

    Đáp án đúng: A

    Gọi O là tâm của hình vuông ABCD 

    Ta có:\(OA = OB = OC = OD = \frac{{\sqrt {A{B^2} + B{C^2}} }}{2} = \frac{{\sqrt 6 a}}{2}\)

    Theo bài ra ta có góc giữa cạnh bên với mặt đáy là \(\widehat {SBO}\) và \(\widehat {SBO} = {60^0}\).

    Ta có: \(SO = OB\tan {60^0} = \frac{{a\sqrt 6 }}{2}.\sqrt 3 = \frac{{a\sqrt {18} }}{2}\).

    Thể tích cần tính là: \({V_{S.ABC{\rm{D}}}} = \frac{1}{3}.SO.{S_{ABCD}} = \frac{1}{3}.\frac{{a\sqrt {18} }}{2}.3{a^2} = \frac{{3{a^3}\sqrt 2 }}{2}\).

    YOMEDIA
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC VỀ TÍNH THỂ TÍCH KHỐI ĐA DIỆN BẰNG CÁCH TRỰC TIẾP

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON