-
Câu hỏi:
Cho hình chóp SABC có SA vuông góc với đáy, SA=a; AB=AC=2a, \(\widehat {BAC} = {120^0}\). Tính thể tích V của khối chóp S.ABC.
- A. \(V = \frac{{\sqrt 3 }}{3}{a^3}\)
- B. \(V = \frac{{\sqrt 3 }}{2}{a^3}\)
- C. \(V = \frac{{\sqrt 3 }}{4}{a^3}\)
- D. \(V = \frac{{\sqrt 3 }}{6}{a^3}\)
Đáp án đúng: A
\(V = \frac{1}{3}SA.{S_{ABC}} = \frac{1}{3}a.\frac{1}{2}.2a.2a.\sin {120^0} = \frac{{{a^3}\sqrt 3 }}{3}\)
YOMEDIA
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC VỀ TÍNH THỂ TÍCH KHỐI ĐA DIỆN BẰNG CÁCH TRỰC TIẾP
- Tính theo a thể tích khối chóp S.ABC có đáy ABC là tam giác đều cạnh a SA vuông góc với mặt phẳng (ABC) Góc giữa đường thẳng SB và mặt phẳng (ABC) bằng 30
- Tính thể tích của khối chóp S.ABCD có ABCD là hình thoi cạnh A, góc ABC=60 độ, SA=A căn 3
- Tính thể tích của khối chóp S.ABCD biết đáy là hình chữ nhật AB = 4a;AD = 2a, SAB là tam giác cân tại S và nằm trong mặt phẳng vuông góc với mặt đáy
- Tính theo a thể tích V của khối lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông cân tại A, mặt bên BCC'B' là hình vuông cạnh 2a
- Tính thể tích V của khối chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 3a, SA vuông góc với mặt phẳng đáy (ABCD) và SA=3a
- Tính thể tích V khối chóp S.ABC có đáy ABC là tam giác vuông cân tại A, BC=2a SA vuông góc với mặt phẳng đáy (ABC) SC tạo với mặt phẳng (SAB) một góc 30
- Tính thể tích V của khối chóp S.ABCD có đáy là hình chữ nhật, AB = a,,BC = 2a, SA vuông góc với mặt phẳng đáy (ABCD) SB tạo với mặt phẳng đáy (ABCD) một góc 60
- Tính V thể tích khối tứ diện SABC có SA SB SC đôi một vuông góc SA = 3a SB = 2a SC = a
- Tính theo a thể tích V của khối chóp S.ABCD có đáy ABCD là hình thoi cạnh a góc ABC bằng 60 độ SA = SB = SC = asqrt 3
- Mỗi hộp đựng 4 quả bóng tenis được đặt dọc, đáy là hình vuông cạnh 2r, cạnh bên bằng 8r