-
Câu hỏi:
Cho \({\log _{27}}5 = a,{\log _8}7 = b,{\log _2}3 = c\). Tính \({\log _{12}}35\)
- A. \(\frac{{3b + 3ac}}{{c + 2}}\).
- B. \(\frac{{3b + 2ac}}{{c + 2}}\).
- C. \(\frac{{3b + 2ac}}{{c + 3}}\).
- D. \(\frac{{3b + 3ac}}{{c + 1}}\).
Đáp án đúng: A
Ta có: \(a = {\log _{27}}5 = {\log _{{3^3}}}5 = \frac{1}{3}{\log _3}5,b = {\log _8}7 = {\log _{{2^3}}}7 = \frac{1}{3}{\log _2}7\)
\({\log _{12}}35 = \frac{{{{\log }_2}35}}{{{{\log }_2}12}} = \frac{{{{\log }_2}7 + {{\log }_2}5}}{{{{\log }_2}({{3.2}^2})}} = \frac{{{{\log }_2}7 + {{\log }_2}3.{{\log }_3}5}}{{{{\log }_2}3 + {{\log }_2}{2^2}}} = \frac{{3b + c.3a}}{{c + 2}} = \frac{{3b + 3ac}}{{c + 2}}.\)
YOMEDIA
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC VỀ LOGARIT VÀ HÀM SỐ LOGARIT
- Kết quả rút gọn của biểu thức A =({log _b^3a + 2log _b^2a + {{log }_b}a})({log }_a}b - {{log }_{ab}}b}) - {log _b}a vvới điều kiện biểu thức tồn tại là:
- Nếu {log _8}3 = p) và ({log _3}5 = q thì log 5 bằng:
- Giả sử p và q là hai số dương sao cho {log _{16}}p = {log _{20}}q = {log _{25}}(p+q). Tìm giá trị p/q
- Tính giá trị của biểu thức A={log_a}1/a^2 với a>0 và a khác 1
- Gọi (C) là đồ thị hàm số y = log x. Tìm khẳng định đúng?
- Tính giới hạn A = mathop {lim }limits_{x o 0} frac{{{{log }_2}left( {1 + x} ight)}}{x}
- Cho {log _{frac{1}{2}}}x = frac{2}{3}{log _{frac{1}{2}}}a - frac{1}{5}{log _{frac{1}{2}}}b. Tìm x.
- Tìm đạo hàm của hàm số y=(x−1)lnx.y=(x−1)lnx.
- Cho {log _a}b = sqrt 3 .) Tình ({log _{frac{{sqrt b }}{a}}}frac{{sqrt b }}{{sqrt a }}.
- Tính đạo hàm của hàm số y = {log _2}left( {frac{1}{{1 - 2{ m{x}}}}} ight)