-
Câu hỏi:
Cho \({\log _{\frac{1}{2}}}x = \frac{2}{3}{\log _{\frac{1}{2}}}a - \frac{1}{5}{\log _{\frac{1}{2}}}b\). Tìm x.
- A. \({a^{\frac{3}{2}}}.{b^{\frac{1}{5}}}\)
- B. \(\frac{{{a^{\frac{3}{2}}}}}{{{b^{\frac{1}{5}}}}}\)
- C. \(\frac{{{a^{\frac{2}{3}}}}}{{{b^{\frac{1}{5}}}}}\)
- D. \(\frac{{{a^{\frac{3}{2}}}}}{{{b^5}}}\)
Đáp án đúng: C
\(\begin{array}{l}{\log _{\frac{1}{2}}}x = \frac{2}{3}{\log _{\frac{1}{2}}}a - \frac{1}{5}{\log _{\frac{1}{2}}}b \Leftrightarrow {\log _{\frac{1}{2}}}x = {\log _{\frac{1}{2}}}{a^{\frac{2}{3}}} - {\log _{\frac{1}{2}}}{b^{\frac{1}{5}}}\\ \Leftrightarrow {\log _{\frac{1}{2}}}x = {\log _{\frac{1}{2}}}\frac{{{a^{\frac{2}{3}}}}}{{{b^{\frac{1}{5}}}}} \Leftrightarrow x = \frac{{{a^{\frac{2}{3}}}}}{{{b^{\frac{1}{5}}}}}\end{array}\)
YOMEDIA
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC VỀ LOGARIT VÀ HÀM SỐ LOGARIT
- Tìm đạo hàm của hàm số y=(x−1)lnx.y=(x−1)lnx.
- Cho {log _a}b = sqrt 3 .) Tình ({log _{frac{{sqrt b }}{a}}}frac{{sqrt b }}{{sqrt a }}.
- Tính đạo hàm của hàm số y = {log _2}left( {frac{1}{{1 - 2{ m{x}}}}} ight)
- Tìm tất cả các giá trị của tham số m để hàm số y=log_2[(m+2)x^2+2(m+2)x+(m+3)] có tập xác định là R.
- Trong hệ thập phân, số {2016^{2017}} có bao nhiêu chữ số?
- Cho hai số thực dương a, b thỏa mãn {log _a}b = 2. Tính {log _{frac{{sqrt a }}{b}}}left( {sqrt[3]{b}a} ight).
- Cho a, b là các số thực, thỏa mãn 0 < a < 1 < b, khẳng định nào sau đây về mệnh đề logarit là đúng?
- Cho các số thực dương a, b khác 1. Biết rằng đường thẳng y=2 cắt đồ thị các hàm số y=a^x, y=b^x và trục tung lần lượt tại A, B, C sao cho C nắm giữa A và B
- Biết {log _6}sqrt a = 3 tính giá trị của {log _a}sqrt 6
- Cho x, y là các số thực thỏa mãn {log _4}left( {x + y} ight) + {log _4}left( {x - y} ight) ge 1.