YOMEDIA
NONE
  • Câu hỏi:

    Tìm tất cả giá trị của \(m\) để hàm số \(y = {x^3} + 3{x^2} + mx + m\) nghịch biến trên một khoảng có độ dài không nhỏ hơn 1. 

    • A. \(m < 3\)   
    • B. \(m \ge \dfrac{9}{4}\) 
    • C. \(m \le \dfrac{9}{4}\) 
    • D. \(m < \dfrac{9}{4}\) 

    Lời giải tham khảo:

    Đáp án đúng: C

    TXĐ :   \(D = \mathbb{R}\)

    Ta có :

    \(\begin{array}{l}f\left( x \right) = {x^3} + 3{x^2} + mx + m\\ \Rightarrow f'\left( x \right) = 3{x^2} + 6x + m\end{array}\)

    Phương trình \(f'\left( x \right)\) có hệ số \({x^2}\) dương nên để hàm số \(y = f\left( x \right)\) có khoảng nghịch biến thì phương trình \(f'\left( x \right) = 0\) có 2 nghiệm phân biệt.

    Do đó  

    Khi đó phương trình \(f'\left( x \right) = 0\) có 2 nghiệm phân biệt \({x_1};{x_2}\) thỏa mãn \(\left\{ \begin{array}{l}{x_1} + {x_2} =  - 2\\{x_1}.{x_2} = \dfrac{m}{3}\end{array} \right.\)

    Suy ra hàm số nghịch biến trên khoảng \(\left( {{x_1};{x_2}} \right)\)

    Để khoảng nghịch biến có độ dài không  nhỏ hơn 1 nên  \({x_2} - {x_1} \ge 1\)

    Ta có :

    \(\begin{array}{l}{x_2} - {x_1} \ge 1\\ \Leftrightarrow {\left( {{x_2} + {x_1}} \right)^2} - 4{x_1}{x_2} \ge 1\\ \Leftrightarrow {\left( { - 2} \right)^2} - 4\dfrac{m}{3} \ge 1\\ \Leftrightarrow \dfrac{{4m}}{3} \le 3 \Leftrightarrow m \le \dfrac{9}{4}\left( {t/m} \right)\end{array}\)

    Chọn C

    ATNETWORK

Mã câu hỏi: 334814

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON