YOMEDIA
NONE
  • Câu hỏi:

    Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đạo hàm \(f'\left( x \right) = \left( {x - 1} \right)\left( {x - 2} \right)\left( {x - 3} \right)\). Hàm số \(y = f\left( x \right)\) có tất cả bao nhiêu điểm cực tiểu?

    • A. 1
    • B. 2
    • C. 3
    • D. 0

    Lời giải tham khảo:

    Đáp án đúng: B

    Ta có: \(f'\left( x \right) = \left( {x - 1} \right)\left( {x - 2} \right)\left( {x - 3} \right)\); \(f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 2\\x = 3\end{array} \right.\)

    BBT của hàm số đã cho như sau:

    Từ BBT ta thấy hàm số đã cho có 1 điểm cực đại là \(x = 2\) và 2 điểm cực tiểu là \(x = 1\) và \(x = 3\)

    Chọn B

    ATNETWORK

Mã câu hỏi: 334788

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON