-
Câu hỏi:
Tìm tập xác định D của hàm số \(y = \sqrt {\ln \left( {\frac{{{x^2} - 3}}{{2x}}} \right)}\).
- A. \(D = \left( { - 1,0} \right) \cup \left( {3, + \infty } \right)\)
- B. \(D = [ - 1;0) \cup \left( {3, + \infty } \right)\)
- C. \(D = [ - 1;0) \cup [3, + \infty )\)
- D. \(D = [ - 1;0] \cup [3, + \infty )\)
Đáp án đúng: C
\(y = \sqrt {\ln \left( {\frac{{{x^2} - 3}}{{2x}}} \right)}\) xác định khi và chỉ khi:\(\ln \left( {\frac{{{x^2} - 3}}{{2x}}} \right) \ge 0 \Leftrightarrow \frac{{{x^2} - 3}}{{2x}} \ge 1 \Leftrightarrow \frac{{{x^2} - 2x - 3}}{{2x}} \ge 0 \Leftrightarrow \left[ \begin{array}{l} - 1 \le 0\\ x \ge 3 \end{array} \right..\)
YOMEDIA
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC VỀ LOGARIT VÀ HÀM SỐ LOGARIT
- Tính đạo hàm của hàm số y=ln(x^4+1)/x^3
- Biểu diễn {log_100}140 theo a={log_4}5 và b={log_7}4
- Tìm tập xác định D của hàm số sqrt(lnx+3)
- Rút gọn biểu thức P=({log_a}b+{log_b}a+2)({log_a}b-{log_ab}b){log_b}a-1
- Tính đạo hàm của hàm số y=ln((2x-1)/(x+1))
- Tìm kết quả đúng biết a^2+4b^2=12ab
- Rút gọn biểu thức P = {log _a}sqrt[3]{{sqrt a }}
- Tính đạo hàm của hàm số y=ln(1-sqrt(x-1))
- A = {log _{sqrt 2 }}sqrt 6 + {log _4}81 - {log _2}27 + {81^{frac{1}{{{{log }_5}3}}}}
- Biểu diễn {log_3}50 theo {log_3}15=a {log_3}10=b