YOMEDIA
NONE
  • Câu hỏi:

    Một vật thực hiện đồng thời ba dao động điều hòa cùng phương, cùng tần số, có li độ lần lượt là \({{x}_{1}}\),\){{x}_{2}}\),\){{x}_{3}}\). Biết phương trình li độ tổng hợp của các dao động thành phần lần lượt là \({{x}_{12}}=6\cos \left( \pi t+\frac{\pi }{6} \right)cm\); \(\ {{\text{x}}_{23}}=6\cos \left( \pi t+\frac{2\pi }{3} \right);\text{ }{{\text{x}}_{13}}=6\sqrt{2}\cos \left( \pi t+\frac{\pi }{4} \right)cm\). Khi li độ của dao động \({{x}_{3}}\) đạt giá trị cực tiểu thì li độ của dao động \({{x}_{1}}\) là

    • A. 0 cm          
    • B. 3 cm                  
    • C. \(3\sqrt{6}\)cm        
    • D. \(3\sqrt{2}\)cm

    Lời giải tham khảo:

    Đáp án đúng: A

    Đáp án A

    + Từ giả thuyết bài toán, ta có:

    \(\left\{ \begin{array}{l} {x_1} + {x_2} = 6\cos \left( {\pi t + \frac{\pi }{6}} \right)cm\\ {x_2} + {x_3} = 6\cos \left( {\pi t + \frac{{2\pi }}{3}} \right)cm\\ {x_1} + {x_3} = 6\sqrt 2 \cos \left( {\pi t + \frac{\pi }{4}} \right)cm \end{array} \right. \Rightarrow \left\{ \begin{array}{l} {x_1} - {x_3} = 6\sqrt 2 \cos \left( {\pi t - \frac{\pi }{{12}}} \right)cm\\ {x_1} + {x_3} = 6\sqrt 2 \cos \left( {\pi t + \frac{\pi }{4}} \right)cm \end{array} \right. \Rightarrow \left\{ \begin{array}{l} {x_1} = 3\sqrt 6 \cos \left( {\pi t + \frac{\pi }{{12}}} \right)cm\\ {x_3} = 3\sqrt 2 \cos \left( {\pi t + \frac{{7\pi }}{{12}}} \right)cm \end{array} \right.\)

    + Hai dao động \({{x}_{1}}\) và \({{x}_{3}}\) vuông pha nhau.

    Ta có \({{\left( \frac{{{x}_{1}}}{{{A}_{1}}} \right)}^{2}}+{{\left( \frac{{{x}_{3}}}{{{A}_{3}}} \right)}^{2}}=1\Leftrightarrow \left\{ \begin{align} & {{x}_{3}}=-{{A}_{3}} \\ & {{x}_{1}}=0 \\ \end{align} \right.\)

    ATNETWORK

Mã câu hỏi: 357600

Loại bài: Bài tập

Chủ đề :

Môn học: Vật lý

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON