YOMEDIA
NONE
  • Câu hỏi:

    Sân trường THPT Chuyên Hà Giang có một bồn hoa hình tròn có tâm O. Một nhóm học sinh lớp 12 được giao thiết kế bồn hoa, nhóm này chia bồn hoa thành bốn phần, bởi hai đường Parabol có cùng đỉnh O và đối xứng nhau qua O. Hai đường Parabol này cắt đường tròn tại bốn điểm A, B, C, D tạo thành một hình vuông có cạnh bằng 4m (như hình vẽ). Phần diện tích S1, S2 dùng để trồng hoa, phần diện tích S3, S4 dùng để trồng cỏ (Diện tích được làm tròn đến hàng phần trăm). Biết kinh phí trồng hoa là 150.000 đồng/ 1 m2, kinh phí trồng cỏ là 100.000 đồng/1m2. Hỏi cả trường cần bao nhiêu tiền để trồng bồn hoa đó? (Số tiền làm tròn đến hàng chục nghìn).

    • A. 3.000.000 đồng
    • B. 6.060.000 đồng
    • C. 3.270.000 đồng
    • D. 5.790.000 đồng

    Lời giải tham khảo:

    Đáp án đúng: D

    Gắn hệ trục tọa độ Oxy như hình vẽ, do ABCD là hình vuông cạnh 4m nên ta có \(A\left( -2;2 \right);B\left( 2;2 \right),C\left( 2;-2 \right);D\left( -2;-2 \right)\), từ đó ta dễ dàng viết được phương trình đường tròn là \({{x}^{2}}+{{y}^{2}}=8\) và phương trình 2 parabol là \(y=\frac{1}{2}{{x}^{2}}\) và \(y=-\frac{1}{2}{{x}^{2}}\).

    Ta có: S1 là diện tích hình phẳng giới hạn bởi đường tròn \({{x}^{2}}+{{y}^{2}}=8\) và parabol (P): \(y=\frac{1}{2}{{x}^{2}}\) 

    \(\begin{align}& \Rightarrow {{S}_{1}}+{{S}_{3}}=4\int\limits_{0}^{2}{\left( \sqrt{8-{{x}^{2}}}-\frac{1}{2}{{x}^{2}} \right)dx}=15,23={{S}_{3}}\,\,\left( {{m}^{2}} \right) \\  & {{S}_{2}}+{{S}_{4}}=2\pi {{\left( 2\sqrt{2} \right)}^{2}}-{{S}_{1}}-{{S}_{3}}=35,04\,\left( {{m}^{2}} \right) \\ \end{align}\)

    \(\Rightarrow \) Chi phí để trồng bồn hoa đó là: \(15,23.150+35,04.100\approx 5790\) (nghìn đồng).

    Chọn D.

    ATNETWORK

Mã câu hỏi: 356718

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON