YOMEDIA
NONE
  • Câu hỏi:

    Cho hai con lắc lò xo nằm ngang \((k_1, m)\) và \((k_2, m)\) như hình vẽ. Trục dao động M và N cách nhau \(9cm\). Lò xo \(k_1\) có độ cứng \(100 N/m\); chiều dài tự nhiên \(l_1= 35cm\)­. Lò xo \(k_2\)­ ­có độ cứng \(25N/m\), chiều dài tự nhiên \(l_2= 26cm\). Hai vật có khối lượng cùng bằng \(m\). Thời điểm ban đầu (t = 0), giữ lò xo \(k_1\) dãn một đoạn \(3cm\), lò xo \(k_2\) nén một đoạn \(6cm\) rồi đồng thời thả nhẹ để hai vật dao động điều hoà. Bỏ qua mọi ma sát. Khoảng cách nhỏ nhất giữa hai vật trong quá trình dao động xấp xỉ bằng :

     

    • A. 11cm
    • B. 10cm
    • C. 9cm
    • D. 13cm

    Lời giải tham khảo:

    Đáp án đúng: B

    Đáp án : B

    Cách giải :

    - Tần số góc của vật 1 và vật 2 là : \(\left\{ \begin{array}{l}{\omega _1} = \sqrt {\dfrac{{{k_1}}}{m}}  = \sqrt {\dfrac{{100}}{m}}  = \dfrac{{10}}{{\sqrt m }}\\{\omega _2} = \sqrt {\dfrac{{{k_2}}}{m}}  = \sqrt {\dfrac{{25}}{m}}  = \dfrac{5}{{\sqrt m }}\end{array} \right. \Rightarrow {\omega _1} = 2{\omega _2}\)

    - Lò xo k1 có chiều dài tự nhiên l1 = 35cm­. Lò xo k2 ­ ­có chiều dài tự nhiên l2 = 26cm

    → Vị trí cân bằng của hai lò xo cách nhau theo phương ngang 1 đoạn : \(35 – 26 = 9cm\)

    - Thời điểm ban đầu (t = 0), giữ lò xo k1 dãn một đoạn 3cm, lò xo k2 nén một đoạn 6cm rồi đồng thời thả nhẹ để hai vật dao động điều hoà. Chọn gốc toạ độ trùng với VTCB của lò xo k1.

    → Phương trình dao động điều hoà của hai vật : \(\left\{ \begin{array}{l}{x_1} = 3\cos \left( {{\omega _1}t} \right) = 3\cos \left( {2.{\omega _2}t} \right)\\{x_2} =  - 9 + 6\cos \left( {{\omega _2}t + \pi } \right) =  - 9 - 6\cos \left( {{\omega _2}t} \right)\end{array} \right.\)

    → Khoảng cách giữa hai vật theo phương ngang trong quá trình dao động là : \(\Delta x = \left| {{x_1} - {x_2}} \right| = \left| {3\cos \left( {2.{\omega _2}t} \right) + 9 + 6\cos \left( {{\omega _2}t} \right)} \right|\)

    Vì :

    \(\begin{array}{l}\cos \left( {2.{\omega _2}t} \right) = 2{\cos ^2}\left( {{\omega _2}t} \right) - 1 \Rightarrow \Delta x = \left| {3\left( {2{{\cos }^2}\left( {{\omega _2}t} \right) - 1} \right) + 9 + 6\cos \left( {{\omega _2}t} \right)} \right|\\ \Rightarrow \Delta x = \left| {6.{{\cos }^2}\left( {{\omega _2}t} \right) + 6\cos \left( {{\omega _2}t} \right) + 6} \right|\end{array}\)

    Đặt : \(a = \cos \left( {{\omega _2}t} \right) \Rightarrow \Delta x = \left| {6.{a^2} + 6a + 6} \right|\)

    Ta có :

    \(\begin{array}{l}6.{a^2} + 6a + 6 = 6\left( {{a^2} + a + 1} \right) = 6\left( {{{\left( {a + \dfrac{1}{2}} \right)}^2} + \dfrac{3}{4}} \right) = 6.{\left( {a + \dfrac{1}{2}} \right)^2} + 4,5\\6.{\left( {a + \dfrac{1}{2}} \right)^2} + 4,5 \le 4,5 \Rightarrow {\left( {6.{a^2} + 6a + 6} \right)_{\min }} = 4,5\\ \Rightarrow \Delta {x_{\min }} = 4,5cm\end{array}\)

    → Khoảng cách nhỏ nhất giữa hai vật trong quá trình dao động là : \({d_{\min }} = \sqrt {M{N^2} + \Delta x_{\min }^2}  = \sqrt {{9^2} + 4,{5^2}}  = 10,06cm\)

    ATNETWORK

Mã câu hỏi: 466675

Loại bài: Bài tập

Chủ đề :

Môn học: Vật lý

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON