-
Câu hỏi:
Hàm số nào dưới đây nghịch biến trên khoảng \(\left( 1;5 \right)\)?
- A. \(\frac{2x+1}{x-2}\).
- B. \(\frac{x-3}{x-4}\).
- C. \(y=\frac{3x-1}{x+1}\).
- D. \(y=\frac{x+1}{3x+2}\).
Lời giải tham khảo:
Đáp án đúng: D
Xét hàm số \(y=\frac{x+1}{3x+2}\) có tập xác định \(D=\left( -\infty ;-\frac{2}{3} \right)\cup \left( -\frac{2}{3};+\infty \right)\) và \({y}'=\frac{-1}{{{\left( 3x+2 \right)}^{2}}}<0\) với mọi \(x\ne -\frac{2}{3}\). Do đó hàm số nghịch biến trên khoảng \(\left( 1;5 \right)\).
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC
- Cần chọn 3 người đi công tác từ một tổ có 30 ng, khi đó số cách chọn là:
- Cho cấp số cộg \(\left( {{u}_{n}} \right)\), biết \({{u}_{2}}=3\) và \({{u}_{4}}=7\). Giá trị của \({{u}_{15}}\) bằng
- Với \(a\) là số thực dương tùy ý, \(a.\sqrt[3]{{{a}^{2}}}\) bằng
- Cho hs \(y=f\left( x \right)\) xác định và liên tục trên khoảng \(\left( -\infty ;+\infty \right),\) có bảng biến thiên
- Với a là số thực dương tùy ý, \({{\log }_{5}}\left( \frac{25}{a} \right)\) bằng
- Đạo hàm của hs \(y={{2021}^{x}}\) là:
- Đồ thị của hàm số \(y=-{{x}^{4}}+2{{x}^{2}}\) cắt trục hoành tại bao nhiêu điểm?
- Đồ thị của hàm số nào được cho dưới đây có dạng như đường cong trong hình bên?
- Tìm đường tiệm cận đứng và đường tiệm cận ngang của đồ thị hàm số \(y=\frac{2x-1}{x+1}\).
- Cho hàm số \(y=f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có bảng xét dấu đạo hàm dưới đây
- Cho hàm số \(y=f\left( x \right)\) xác định và liên tục trên \(\left[ -2\,;2 \right]\) và có đồ thị là đường cong trong hình vẽ bên. Hàm số \(f\left( x \right)\) đạt cực tiểu tại điểm
- Nghiệm của phương trình \({{\left( \frac{1}{4} \right)}^{3x-4}}=\frac{1}{16}\) là:
- Tích các nghiệm của phương trình \({{2}^{{{x}^{2}}-2x}}=8\) là
- Hàm số \(F\left( x \right)={{x}^{3}}-2{{x}^{2}}+3\) là nguyên hàm của hàm số nào trong các hàm số sau?
- Biết \(F\left( x \right)\) là một nguyên hàm của của hàm số \(f\left( x \right)=\cos 2x\) thỏa mãn \(F\left( \frac{\pi }{2} \right)=1\). Tính \(F\left( \frac{\pi }{4} \right)\).
- Cho \(\int\limits_{2}^{3}{f(x)\text{d}x}=-2\) . Tính \(I=\int\limits_{-\frac{3}{2}}^{-1}{f(-2x)\text{d}x}\) ?
- Cho đồ thị hàm số \(y=f\left( x \right)\) như hình vẽ. Diện tích S của hình phẳng ( tô đậm) trong hình là
- Cho hai số phức \({{z}_{1}}=3+2i\) và \({{z}_{2}}=4i\). Phần thực của số phức \({{z}_{1}}.{{z}_{2}}\) là
- Cho hai số phức z và \(\text{w}\) thỏa mãn z=-i+2 và \(\overline{\text{w}}=-3-2i\). Số phức \(\overline{z}.\text{w}\) bằng:
- Trên mặt phẳng tọa độ, điểm đối xứng với điểm biểu diễn số phức z=-2i+4 qua trục Oy có tọa độ là
- Khối chóp S.ABCD có đáy là hình bình hành, biết diện tích hình bình hành ABCD bằng 8 và chiều cao khối chóp bằng 3. Tính thể tích khối chóp S.ABC
- Đường chéo của hình hộp chữ nhật có ba kích thước 3,4,12 có độ dài là
- Công thức thể tích của khối nón có bán kính đáy là \(\frac{r}{2}\) và chiều cao h là
- Hình trụ có đường cao h=2cm và đường kính đáy là 10cm. Diện tích toàn phần của hình trụ đó bằng
- Trong không gian \(Oxyz\), cho hai điểm \(A\left( 1;1;3 \right)\) và \(B\left( 4;2;1 \right)\). Độ dài đoạn thẳng \(AB\) bằng
- Trong không gian \(Oxyz\), mặt cầu \(\left( S \right):{{x}^{2}}+{{\left( y-1 \right)}^{2}}+{{\left( z+3 \right)}^{2}}=25\) có tâm là
- Trong không gian \(Oxyz\), vectơ nào dưới đây là một vectơ pháp tuyến của mặt phẳng vuông góc với trục \(Oy\)?
- Trong không gian \(Oxyz\), đường thẳng nào dưới đây đi qua điểm \(I\left( 2;1;1 \right)\)?
- Chọn ngẫu nhiên một số trong 10 số nguyên dương đầu tiên. Xác suất để chọn được số nguyên tố bằng
- Hàm số nào dưới đây nghịch biến trên khoảng \(\left( 1;5 \right)\)?
- Gọi M,m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(f\left( x \right)={{x}^{3}}-\frac{3}{2}{{x}^{2}}-6x+1\) trên đoạn \(\left[ 0;3 \right]\). Khi đó 2M-m có giá trị bằng
- Tập nghiệm của bất phương trình \({{\log }_{3}}\left( 25-{{x}^{2}} \right)\le 2\) là
- Nếu \(\int\limits_{0}^{\frac{\pi }{2}}{\left[ 2020f\left( x \right)+\sin 2x \right]}\text{d}x=2021\) thì \(\int\limits_{0}^{\frac{\pi }{2}}{f\left( x \right)}\text{d}x\) bằng
- Cho số phức z=2-3i. Gọi a,b lần lượt là phần thực và phần ảo của số phức \(\text{w}=\left( 1-2i \right)\overline{z}\). Khi đó giá trị của biểu thức P=a+b+2021 bằng
- Cho hình lăng trụ đứng \(ABC.{A}'{B}'{C}'\) có đáy ABC là tam giác vuông cân tại có \(AB=a,A{A}'=a\sqrt{2}\). Góc giữa đường thẳng \({A}'C\) với mặt phẳng \(\left( A{A}'{B}'B \right)\) bằng:
- Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình chữ nhật \(AB=a,AD=a\sqrt{3}, SA\bot \left( ABCD \right)\) và SA=2a. Khoảng cách từ điểm A đến mặt phẳng \(\left( SBD \right)\) bằng:
- Trong không gian Oxyz, mặt cầu có tâm \(I\left( 3;-1;2 \right)\) và tiếp xúc với trục \(Ox\) có phương trình là:
- Trong không gian Oxyz, cho hình bình hành ABCD có \(A\left( 0;1;-2 \right),B\left( 3;-2;1 \right)\) và \(C\left( 1;5;-1 \right)\). Phương trình tham số của đường thẳng CD là:
- Cho hàm số \(f(x)\) có đạo hàm liên tục trên \(\mathbb{R}.\) Bảng biến thiên của hàm số \(y=f'(x)\) được cho như hình vẽ. Trên \(\left[ -4;2 \right]\) hàm số \(y=f\left( 1-\frac{x}{2} \right)+x\) đạt giá trị lớn nhất bằng?
- Có bao nhiêu số nguyên dương \(y\) sao cho ứng với mỗi \(y \) có không quá 10 số nguyên \(x\) thỏa mãn \(\left( {{3}^{x+1}}-\sqrt{3} \right)\left( {{3}^{x}}-y \right)
- Cho hàm số . Tích phân \(\int\limits_{0}^{\frac{\pi }{2}}{f\left( 2{{\sin }^{2}}x+3 \right)\sin 2x\text{d}x}\) bằng
- Có bao nhiêu số phức \(z\) thỏa mãn \(\left| z \right|=\sqrt{5}\) và \(\left( z-3i \right)\left( \bar{z}+2 \right)\) là số thực?
- Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, \(SA\bot \left( ABC \right)\), AB=a. Biết góc giữa đường thẳng AC và mặt phẳng \(\left( SBC \right)\) bằng \(30{}^\circ \). Thể tích khối chóp S.ABC bằng
- Cổ động viên bóng đá của đội tuyển Indonesia muốn làm một chiếc mũ có dạng hình nón sơn hai màu Trắng và Đỏ như trên quốc kỳ. Biết thiết diện qua trục của hình nón là tam giác vuông cân. Cổ động viên muốn sơn màu Đỏ ở bề mặt phần hình nón có đáy là cung nhỏ \(\overset\frown{MBN}\), phần còn là của hình nón sơn màu Trắng. Tính tỉ số phần diện tích hình nón được sơn màu Đỏ với phần diện tích sơn màu Trắng.
- Trong không gian với hệ tọa độ \(Oxyz\), cho hai đường thẳng và \(\left( {{d}_{2}} \right):\frac{x}{1}=\frac{y-1}{-2}=\frac{z-1}{3}\). Đường thẳng \(\Delta \) cắt cả hai đường thẳng \({{d}_{1}}\),\({{d}_{2}}\) và song song với đường thẳng \(d:\frac{x-4}{1}=\frac{y-7}{4}=\frac{z-3}{-2}\) đi qua điểm nào trong các điểm dưới đây?
- Cho hàm số \(f\left( x \right)\) và có \(y={f}'\left( x \right)\) là hàm số bậc bốn và có đồ thị là đường cong trong hình bên. Số điểm cực đại của hàm số \(g\left( x \right)=f\left( {{\left| x \right|}^{3}} \right)-\left| x \right|\) là
- Có bao nhiêu \(m\) nguyên \(m\in \left[ -2021;2021 \right]\) để phương trình \({{6}^{x}}-2m={{\log }_{\sqrt[3]{6}}}\left( 18\left( x+1 \right)+12m \right)\) có nghiệm?
- Cho hàm số bậc ba \(y=f\left( x \right)\) có đồ thị là đường cong \(\left( C \right)\) trong hình bên. Hàm số \(f\left( x \right)\) đạt cực trị tại hai điểm \({{x}_{1}},\,\,{{x}_{2}}\) thỏa \(f\left( {{x}_{1}} \right)+f\left( {{x}_{2}} \right)=0\). Gọi \(A,\,\,B\) là hai điểm cực trị của đồ thị \(\left( C \right);M,\,\,N,\,\,K\) là giao điểm của \(\left( C \right)\) với trục hoành; S là diện tích của hình phẳng được gạch trong hình, \({{S}_{2}}\) là diện tích tam giác NBK. Biết tứ giác MAKB nội tiếp đường tròn, khi đó tỉ số \(\frac{{{S}_{1}}}{{{S}_{2}}}\) bằng
- Trong mặt phẳng với hệ trục tọa độ Oxy, cho hai số phức \({{z}_{1}}\) có điểm biểu diễn M, số phức \({{z}_{2}}\) có điểm biểu diễn là N thỏa mãn \(\left| {{z}_{1}} \right|=1\), \(\,\left| {{z}_{2}} \right|=3\) và \(\widehat{MON}=120{}^\circ \). Giá trị lớn nhất của \(\left| 3{{\text{z}}_{1}}+2{{z}_{2}}-3i \right|\) là \({{M}_{0}}\), giá trị nhỏ nhất của \(\left| 3{{\text{z}}_{1}}-2{{z}_{2}}+1-2i \right|\) là \({{m}_{0}}\). Biết \({{M}_{0}}+{{m}_{0}}=a\sqrt{7}+b\sqrt{5}+c\sqrt{3}+d\), với \(a,b,c,d\in \mathbb{Z}\). Tính a+b+c+d ?
- Trong không gian \(Oxyz\) Cho \(d\,:\,\,\frac{x-4}{2}=\frac{y-5}{-1}=\frac{z-3}{2}\) và hai điểm \(A\left( \,3;\,1;\,2 \right);\,\,B\left( \,-1;\,3;-2 \right)\) Mặt cầu tâm \(I\) bán kính \(R\) đi qua hai điểm hai điểm \(A,\,B\) và tiếp xúc với đường thẳng \(d.\) Khi \(R\) đạt giá trị nhỏ nhất thì mặt phẳng đi qua ba điểm \(A,\,B,\,I\) là \(\left( P \right):\,\,2x+by+c\text{z}+d=0.\) Tính \(d+b-c.\)