YOMEDIA
NONE
  • Câu hỏi:

    Có bao nhiêu số nguyên dương \(y\) sao cho ứng với mỗi \(y \) có không quá 10 số nguyên \(x\) thỏa mãn \(\left( {{3}^{x+1}}-\sqrt{3} \right)\left( {{3}^{x}}-y \right)<0\)?

    • A. \(59149\).
    • B. \(59050\).
    • C. \(59049\)
    • D. \(59048\).

    Lời giải tham khảo:

    Đáp án đúng: C

    Đặt \(t={{3}^{x}}>0\) thì ta có bất phương trình \((3t-\sqrt{3})(t-y)<0\) hay \)(t-\frac{\sqrt{3}}{3})(t-y)<0\text{ }(*).\)

    Vì \(y\in {{\mathbb{Z}}^{+}}\) nên \(y>\frac{\sqrt{3}}{3}\), do đó \((*)\Leftrightarrow \frac{\sqrt{3}}{3}<t<y\Leftrightarrow \frac{\sqrt{3}}{3}<{{3}^{x}}<y\) Do \(y\in {{\mathbb{N}}^{*}}\)

    \(\Leftrightarrow -\frac{1}{2}<x<{{\log }_{3}}y.\)

    Do mỗi giá trị \(y\in {{\mathbb{N}}^{*}}\)có không quá 10 giá trị nguyên của \(x\in \left( -\frac{1}{2};{{\log }_{3}}y \right)\)

    nên \(0\le {{\log }_{3}}y\le 10\) hay \(\Leftrightarrow 1\le y\le {{3}^{10}}=59049\), từ đó có \(y\in \{1,2,\ldots ,59049\}.\)

    Vậy có 59049 giá trị nguyên dương của \(y\).

    ATNETWORK

Mã câu hỏi: 275366

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
NONE
ON