YOMEDIA
NONE
  • Câu hỏi:

    Dùng một nguồn dao động có tần số thay đổi được để tạo ra sóng lan truyền trên một sợi dây đàn hồi. Thay đổi tần số của nguồn thì nhận thấy có hai tần số liên tiếp f= 14 Hz và f= 18 Hz trên dây có sóng dừng. Biết tốc độ truyền sóng trên dây không đổi. Để có sóng dừng trên dây với 2 bụng sóng thì tần số của nguồn dao động là

    • A. 8 Hz.          
    • B. 10 Hz.     
    • C. 6 Hz.    
    • D. 4 Hz.

    Lời giải tham khảo:

    Đáp án đúng: C

    Khi đầu trên của dây gắn với một nhánh của âm thoa dao động với tần số 14Hz thấy trên dây xảy ra sóng dừng với (k1 + 1) bụng sóng thì:

    \(l = (2{k_1} + 1)\frac{\lambda }{4} = (2{k_1} + 1).\frac{v}{{4{f_1}}} \Rightarrow {f_1} = \frac{{(2{k_1} + 1)v}}{{4l}} = 14\)

    Khi đầu trên gắn với một nhánh của âm thoa dao động với tần số 18 Hz thấy trên dây xảy ra sóng dừng với (k2 + 1) bụng sóng thì:

    \(l = (2{k_2} + 1)\frac{{\lambda '}}{4} = (2{k_2} + 1).\frac{v}{{4{f_2}}} \Rightarrow {f_2} = \frac{{(2{k_2} + 1)v}}{{4l}} = 18\)

    Vì đây là hai tần số liên tiếp để trên dây có sóng dừng, tức là số bụng là hai số liên tiếp hay: k2 = k1 + 1.

    Do đó:  

    \(\frac{{2{k_2} + 1}}{4}.\frac{v}{l} = 18 \Leftrightarrow \frac{{2{k_1} + 1.v}}{{4l}} + \frac{v}{{2l}} = 18 \Rightarrow \frac{v}{{2l}} = 4\)

    Để trên dây có 2 bụng sóng thì:

    \(l = (2k + 1).\frac{v}{{4f}} \Rightarrow f = \frac{{(2k + 1)v}}{{4l}} = 3.\frac{v}{{4l}} = 6Hz\)

    Chọn C.

    ATNETWORK

Mã câu hỏi: 377472

Loại bài: Bài tập

Chủ đề :

Môn học: Vật lý

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON