YOMEDIA
NONE
  • Câu hỏi:

    Có bao nhiêu số nguyên m sao cho phương trình \({9^{2x - {x^2}}} - 4.\,{3^{2x - {x^2}}} + m = 0\) có đúng hai nghiệm thực phân biệt ?

    • A. 1
    • B. 2
    • C. 3
    • D. 4

    Lời giải tham khảo:

    Đáp án đúng: C

    Đặt \(t = {3^{2x - {x^2}}} \Rightarrow t' = \left( {2 - 2x} \right).\,{3^{2x - {x^2}}}.\,\ln 3\). Ta xác định miền của ẩn phụ t

    \( \Rightarrow t \in \left( {0;3} \right]\)

    Phương trình trở thành \(m =  - {t^2} + 4t = g\left( t \right)\) (*); \(g'\left( t \right) =  - 2t + 4\)

    Phương trình đã cho có đúng 2 nghiệm phân biệt  khi phương trình (*)  có đúng một \(t \in \left( {0;3} \right) \Leftrightarrow \left[ \begin{array}{l} m = 4\\ 0 < m < 3 \end{array} \right.\) nghiệm .

    Vậy các giá trị nguyên của m là 1; 2; 4

    ATNETWORK

Mã câu hỏi: 255884

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON