YOMEDIA
NONE
  • Câu hỏi:

    Có bao nhiêu giá trị nguyên của tham số m thuộc khoảng \(\left( -2000;2000 \right)\) để \(4{{a}^{\sqrt{{{\log }_{a}}b}}}-{{b}^{\sqrt{{{\log }_{b}}a}}}>m\sqrt{{{\log }_{a}}b}+3\) với mọi \(a,b\in \left( 1;+\infty  \right)\)

    • A. 2199
    • B. 2000
    • C. 2001
    • D. 1999

    Lời giải tham khảo:

    Đáp án đúng: B

    Đặt \(\sqrt {{{\log }_a}b} = t > 0 \Rightarrow \left\{ \begin{array}{l} \sqrt {{{\log }_b}a} = \frac{1}{t}\\ b = {a^{\frac{1}{{{t^2}}}}} \end{array} \right.\)

    Bất phương trình đã cho trở thành

    \(4{{a}^{t}}-{{\left( {{a}^{{{t}^{2}}}} \right)}^{\frac{1}{t}}}>ma+3\) với \(\forall t>0\)

    \(\Leftrightarrow 4{{a}^{t}}-{{a}^{t}}>ma+3\Leftrightarrow 3{{a}^{t}}>mt+3\) với \(\forall t>0\).

    Do vậy đồ thị hàm số \(y=3{{a}^{t}}\) luôn nằm trên đường thẳng y=mt+3 với \(\forall t>0\)

    Dựa vào đồ thị hàm số suy ra \(m\le 0\)

    Suy ra \(m\in \left\{ -1999;0 \right\}\) vậy có 2000 giá trị thỏa mãn

    ATNETWORK

Mã câu hỏi: 259526

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON