YOMEDIA
NONE
  • Câu hỏi:

    Cho phương trình \({{\sin }^{2018}}x+{{\cos }^{2018}}x=2\left( {{\sin }^{2020}}x+{{\cos }^{2020}}x \right)\). Tính tổng các nghiệm của phương trình trong khoảng \(\left( 0;2018 \right)\).

    • A. \({\left( {\frac{{1285}}{2}} \right)^2}\pi \)
    • B. \({\left( {643} \right)^2}\pi \)
    • C. \({\left( {642} \right)^2}\pi \)
    • D. \({\left( {\frac{{1285}}{4}} \right)^2}\pi \)

    Lời giải tham khảo:

    Đáp án đúng: A

    Xét \(\cos x=0\), ta có 1+0=2.(1+0). Vậy \(\cos x=0\) không là nghiệm của phương trình.

    Chia cả 2 vế phương trình cho \({{\cos }^{2020}}x\ne 0, \frac{1}{{{\cos }^{2}}x}.{{\tan }^{2018}}x+\frac{1}{{{\cos }^{2}}x}=2\left( {{\tan }^{2020}}x+1 \right)\left( 1 \right)\)

    \(\left( 1 \right)\Leftrightarrow \left( 1+{{\tan }^{2}}x \right){{\tan }^{2018}}x+1+{{\tan }^{2}}x=2\left( {{\tan }^{2020}}x+1 \right)\)

    Đặt t=tan x, phương trình trở thành \(\left( 1+{{\operatorname{t}}^{2}} \right){{\operatorname{t}}^{2018}}+1+{{\operatorname{t}}^{2}}=2\left( 1+{{\operatorname{t}}^{2020}} \right)\Leftrightarrow {{\operatorname{t}}^{2018}}+{{\operatorname{t}}^{2020}}+1+{{\operatorname{t}}^{2}}=2+2{{\operatorname{t}}^{2020}}\)

    \(\Leftrightarrow {{t}^{2020}}+1-{{t}^{2018}}-{{t}^{2}}=0 \Leftrightarrow {{t}^{2018}}\left( {{t}^{2}}-1 \right)-\left( {{t}^{2}}-1 \right)=0 \Leftrightarrow \left( {{t}^{2018}}-1 \right)\left( {{t}^{2}}-1 \right)=0\)

    \(\Leftrightarrow \left[ \begin{align} & t=1 \\ & t=-1 \\ \end{align} \right.\Rightarrow \tan x=\pm 1\Leftrightarrow x=\pm \frac{\pi }{4}+k\pi \)

    \(\Leftrightarrow x=\frac{\pi }{4}+k\frac{\pi }{2}\left( k\in \mathbb{Z} \right)\)

    Do \(x\in \left( 0;2018 \right) \Rightarrow 0<\frac{\pi }{4}+\frac{k\pi }{2}<2018 \Rightarrow 0\le k\le 1284,k\in \mathbb{Z}\)

    Vậy tổng các nghiệm của phương trình trong khoảng \(\left( 0;2018 \right)\) bằng

    \(\frac{\pi }{4}.1285+\left( 1+2+...+1284 \right)\frac{\pi }{2} =\frac{\pi }{4}.1285+\frac{1284.1285}{4}\pi  ={{\left( \frac{1285}{2} \right)}^{2}}\pi \)

    ATNETWORK

Mã câu hỏi: 258488

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON