-
Câu hỏi:
Cho nữa đường tròn tâm O có đường kính PQ = 2R .Vẽ các tiếp tuyến Px, Qy (Px ,Qy và nữa đường tròn cùng thuộc nữa mặt phẳng bờ PQ).Trên nữa đường tròn đã cho lấy điểm M không trùng với P và Q ,tiếp tuyến tại M cắt Px, Qy lần lượt tại E và F.
1) Chứng minh tứ giác PEMO nội tiếp được một đường tròn
2) Chứng minh : EO2 = PE.EF
3) Kẻ MH vuông góc PQ (H thuộc PQ), gọi K là giao điểm của EQ và MH.Tính tỉ số giữa MK và MH
Lời giải tham khảo:
1) Xét tứ giác AHEK có:
(Góc nội tiếp chắn nửa đường tròn)
Tứ giác AHEK nội tiếp
2) Do đường kính nên B là điểm chính giữa cung MN
(1)
Ta lại có: BK // NF (cùng vuông góc với AC)
(so le trong) (2)
(đồng vị) (3)
Từ (1);(2);(3) hay
cân tại K
có KE là phân giác của góc
Ta lại có: ; KE là phân giác của góc là phân giác ngoài của tại K (5)
Từ (4) và (5)
3) Ta có vuông tại K
Theo giả thiết ta lại có vuông cân tại K
Ta có
Mặt khác cân tại O vuông cân tại O
(cùng vuông góc với AB)
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC
- 1) Giải phương trình: x2 + 6x + 5 = 02) Giải hệ phương trình:
- Cho biểu thức P = với x > 0 và x 1 1. Rút gọn P 2. Tìm giá trị của x để P = 3
- Cho parabol (P): y = x2 và đường thẳng (d) : (y = - 2ax - 4a) (với a là tham số)1.Tìm tọa độ giao điểm của ( d) và (P) khi
- Cho nữa đường tròn tâm O có đường kính PQ = 2R .Vẽ các tiếp tuyến Px, Qy (Px ,Qy và nữa đường tròn cùng thuộc nữa mặt phẳng bờ PQ).Trên nữa đường tròn đã cho lấy điểm M không trùng với P và Q ,tiếp tuyến tại M cắt Px, Qy lần lượt tại E và F.
- Cho x, y, z là ba số thực dương thỏa mãn: (x+y+z=3)Tìm giá trị nhỏ nhất của biểu thức: (Q = frac{{x + 1}}{{1 + {y^2}}} +