YOMEDIA
NONE
  • Câu hỏi:

    Cho khối lăng trụ tam giác đều \(ABC.{A_1}{B_1}{C_1}\) có tất cả các cạnh bằng a. Gọi M là trung điểm của \(AA_1\). Thể tích khối chóp \(M.BC{A_1}\) là:

    • A. \(\dfrac{{{a^3}\sqrt 3 }}{{12}}\)    
    • B. \(\dfrac{{{a^3}\sqrt 3 }}{{24}}\) 
    • C. \(\dfrac{{{a^3}\sqrt 3 }}{6}\)   
    • D. \(\dfrac{{{a^3}\sqrt 3 }}{8}\) 

    Lời giải tham khảo:

    Đáp án đúng: B

    \(\Delta ABC\)là tam giác đều cạnh \(a\)nên có diện tích \({S_{ABC}} = \dfrac{{{a^2}\sqrt 3 }}{4}\)

    Ta có \(AM = \dfrac{{A{A_1}}}{2} = \dfrac{a}{2}\)

    Hai tứ diện \(MABC\)và \(M{A_1}BC\)có chung đỉnh\(C\), diện tích hai đáy \(MAB\)và \(M{A_1}B\)bằng nhau nên có thể tích bằng nhau, suy ra

    \({V_{M.BC{A_1}}} = {V_{M.ABC}} = \dfrac{1}{3}AM.{S_{ABC}} \)\(\,= \dfrac{{{a^3}\sqrt 3 }}{{24}}\)

    Chọn B.

    ATNETWORK

Mã câu hỏi: 405266

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON