YOMEDIA
NONE
  • Câu hỏi:

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a. SA vuông góc với đáy; góc tạo bởi SC và (SAB) là 300 . Gọi E, F là trung điểm của BC và SD. Tính khoảng cách giữa hai đường thẳng chéo nhau DE và CF.

    • A. \(\dfrac{{3a\sqrt {13} }}{{13}}\)    
    • B. \(\dfrac{{4a\sqrt {13} }}{{13}}\) 
    • C. \(\dfrac{{a\sqrt {13} }}{{13}}\)   
    • D. \(\dfrac{{2a\sqrt {13} }}{{13}}\) 

    Lời giải tham khảo:

    Đáp án đúng: C

    Góc giữa SC và (SAB) là góc BSC

    \( \Rightarrow \widehat {BSC} = {30^o}\)

    \(\begin{array}{l}SB = CB\cot {30^o} = a\sqrt 3 \\SA = \sqrt {S{B^2} - A{B^2}}  = \sqrt {3{a^2} - {a^2}}  = a\sqrt 2 \end{array}\)

    Gắn hệ trục tọa độ như sau:

    Gốc \(O \equiv A\left( {0;0;0} \right);\,Ox \equiv AB;\)

    \(\,Oy \equiv AD;\,Oz \equiv AS\)

    Tạo độ các điểm được xác định như sau:

    \(\begin{array}{l}D\left( {0;a;0} \right);E\left( {a;\dfrac{a}{2};0} \right);C\left( {a;a;0} \right);F\left( {0;\dfrac{a}{2};\dfrac{a}{{\sqrt 2 }}} \right)\\\overrightarrow {DE} \left( {a; - \dfrac{a}{2};0} \right)\\\overrightarrow {CF} \left( { - a; - \dfrac{a}{2};\dfrac{a}{{\sqrt 2 }}} \right)\\\overrightarrow {DC} \left( {a;0;0} \right)\\\left[ {\overrightarrow {DE} ,\overrightarrow {CF} } \right] = \left( { - \dfrac{{{a^2}}}{{2\sqrt 2 }}, - \dfrac{{{a^2}}}{{\sqrt 2 }}; - {a^2}} \right)\\d = \dfrac{{\left| {\overrightarrow {DC} .\left[ {\overrightarrow {DE} ,\overrightarrow {CF} } \right]} \right|}}{{\left| {\left[ {\overrightarrow {DE} ,\overrightarrow {CF} } \right]} \right|}}\\\,\,\,\,\,\,\, = \dfrac{{\left| { - \dfrac{{{a^3}}}{{2\sqrt 2 }}} \right|}}{{\sqrt {{{\left( { - \dfrac{{{a^2}}}{{2\sqrt 2 }}} \right)}^2} + {{\left( { - \dfrac{{{a^2}}}{{\sqrt 2 }}} \right)}^2} + {{\left( { - {a^2}} \right)}^2}} }}\\\,\,\,\,\,\, = \dfrac{{a\sqrt {13} }}{{13}}\end{array}\)

    Chọn C

    ATNETWORK

Mã câu hỏi: 405284

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON