YOMEDIA
NONE
  • Câu hỏi:

    Cho hình lăng trụ đứng \(2A=\left[ f'\left( 1 \right)+f'\left( 2018 \right) \right]+\left[ f'\left( 2 \right)+f'\left( 2017 \right) \right]+...+\left[ f'\left( 2018 \right)+f'\left( 1 \right) \right]=2018\) có AB = a, AC = 2a, \(\text{A}{{\text{A}}_{1}}=2a\sqrt{5}\) và \(\widehat{BAC}={{120}^{0}}\). Gọi K, I lần lượt là trung điểm của các cạnh \(C{{C}_{1}},B{{B}_{1}}\). Khoảng cách từ điểm I đến mặt phẳng \(({{A}_{1}}BK)\) bằng

    • A. \(a\sqrt {15} \)
    • B. \(\frac{{a\sqrt 5 }}{6}\)
    • C. \(\frac{{a\sqrt {15} }}{3}\)
    • D. \(\frac{{a\sqrt 5 }}{3}\)

    Lời giải tham khảo:

    Đáp án đúng: B

    Ta có \(BC=\sqrt{A{{C}^{2}}+A{{B}^{2}}-2AC.AB.cos{{120}^{0}}}=a\sqrt{7};\)

    \(\begin{align} & {{A}_{1}}B=\sqrt{{{A}_{1}}{{A}^{2}}+A{{B}^{2}}}=a\sqrt{21};{{A}_{1}}K=\sqrt{{{A}_{1}}{{C}_{1}}^{2}+{{C}_{1}}{{K}^{2}}}=3a,KB=\sqrt{K{{C}^{2}}+C{{B}^{2}}}=2a\sqrt{3} \\ & d(I,({{A}_{1}}BK))=\frac{1}{2}d\left( {{B}_{1}},\left( {{A}_{1}}BK \right) \right)=\frac{1}{2}.\frac{3{{V}_{{{B}_{1}}{{A}_{1BK}}}}}{{{S}_{\Delta {{A}_{1}}BK}}} \\ \end{align}\)

    Mà \({{V}_{{{B}_{1}}{{A}_{1}}BK}}=\frac{1}{2}{{V}_{K.{{A}_{1}}{{B}_{1}}BA}}=\frac{1}{2}.\frac{2}{3}{{V}_{ABC.{{A}_{1}}{{B}_{1}}{{C}_{1}}}}=\frac{1}{3}.2a\sqrt{5}.\frac{1}{2}.a.2a.\sin {{120}^{0}}=\frac{{{a}^{3}}\sqrt{15}}{3}.\)

    Theo công thức Herong, diện tích tam giác \({{A}_{1}}BK\) bằng

    \(S=\sqrt{p\left( p-2a\sqrt{3} \right)\left( p-3a \right)\left( p-a\sqrt{21} \right)}=3{{a}^{2}}\sqrt{3}\) với \(p=\frac{2a\sqrt{3}+3a+a\sqrt{21}}{2}\)

    Vậy \(d\left( I,\left( {{A}_{1}}BK \right) \right)=\frac{3}{2}.\frac{\frac{{{a}^{3}}\sqrt{15}}{3}}{3{{a}^{2}}\sqrt{3}}=\frac{a\sqrt{5}}{6}.\)

    ATNETWORK

Mã câu hỏi: 258296

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON