YOMEDIA
NONE
  • Câu hỏi:

    Cho hình hộp chữ nhật ABCD.A'B'C'D' có diện tích các mặt ABCD, ABB'A', ADD'A' lần lượt bằng \(36c{m^2}\), \(225c{m^2}\), \(100c{m^2}\). Tính thể tích khối A.A'B'D'?

    • A. \(900c{m^3}.\)
    • B. \(150c{m^3}.\)
    • C. \(250c{m^3}.\)
    • D. \(300c{m^3}.\)

    Lời giải tham khảo:

    Đáp án đúng: B

    Phương pháp giải:

    - Tính thể tích khối hộp ABCD.A'B'C'D'.

    - So sánh thể tích chóp A.A'B'D' với thể tích khối hộp ABCD.A'B'C'D'.

    Lời giải chi tiết:

    Đặt \(AD = a;{\mkern 1mu} {\mkern 1mu} AB = b;{\mkern 1mu} {\mkern 1mu} AA' = c.\)

    Ta có diện tích hình chữ nhật ABCD, ABB'A', ADD'A' lần lượt là \(36c{m^2}\), \(225c{m^2}\), \(100c{m^2}\).

    Suy ra \(\left\{ {\begin{array}{*{20}{l}}{ab = 36}\\{bc = 225}\\{ac = 100}\end{array}} \right. \Rightarrow {a^2}{b^2}{c^2} = 36.225.100 = 810000\) \( \Rightarrow abc = 900\).

    Ta có: \({V_{A.A'B'D'}} = \dfrac{1}{3}.AA'.{S_{A'B'D'}} = \dfrac{1}{3}AA'.\dfrac{1}{2}{S_{A'B'C'D'}}.\)

    \( \Rightarrow {V_{A.A'B'D'}} = \dfrac{1}{6}{V_{ABCD.A'B'C'D'}} = \dfrac{1}{6}.abc = 150{\mkern 1mu} {\mkern 1mu} \left( {c{m^3}} \right)\).

    Chọn B.

    ATNETWORK

Mã câu hỏi: 449843

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON