YOMEDIA
NONE
  • Câu hỏi:

    Cho hàm số \(y = f(x)\) có đạo hàm \(f'\left( x \right) = 2018{\left( {x - 1} \right)^{2017}}{\left( {x - 2} \right)^{2018}}{\left( {x - 3} \right)^{2019}}\). Tìm số điểm cực trị của \(f(x)\)?

    • A. 0
    • B. 1
    • C. 2
    • D. 3

    Lời giải tham khảo:

    Đáp án đúng: C

    Phương pháp giải:

    Điểm cực trị của hàm số là điểm mà tại đó y' đổi dấu.

    Lời giải chi tiết:

    \(f'\left( x \right) = 2018{\left( {x - 1} \right)^{2017}}{\left( {x - 2} \right)^{2018}}{\left( {x - 3} \right)^{2019}} = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{\rm{\;}}&{x = 1}\\{}&{x = 2}\\{}&{x = 3}\end{array}} \right.\)

    Trong đó, \(f'\left( x \right)\) đổi dấu tại 2 điểm \(x = 1,{\mkern 1mu} {\mkern 1mu} x = 3\)

    \( \Rightarrow \)Hàm số \(y = f\left( x \right)\) có 2 điểm cực trị.

    Chọn C.

    ATNETWORK

Mã câu hỏi: 449920

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON