YOMEDIA
NONE
  • Câu hỏi:

    Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\) có \(AB = a,\) \(AD = 2a,\) \(AA' = 3a\). Thể tích khối nón có đỉnh trùng với tâm của hình chữ nhật \(ABCD\), đường tròn đáy ngoại tiếp hình chữ nhật \(A'B'C'D'\) là 

    • A. \(\dfrac{{15\pi {a^3}}}{4}\)      
    • B. \(\dfrac{{5\pi {a^3}}}{4}\) 
    • C. \(15\pi {a^3}\)  
    • D. \(5\pi {a^3}\)  

    Lời giải tham khảo:

    Đáp án đúng: B

                                               

    Gọi \(O\) là giao điểm của \(AC\) và \(BD\), \(O'\) là giao điểm của \(A'C'\) và \(B'D'\).

    Khối nón đã cho có đỉnh là \(O\), đường tròn đáy là đường tròn tâm \(O'\) ngoại tiếp hình chữ nhật \(A'B'C'D'\).

    Do đó khối nón trên có chiều cao là \(h = OO' = AA' = 3a\) và bán kính đường tròn đáy là

    \(r = O'A' = \dfrac{1}{2}A'C' = \dfrac{1}{2}\sqrt {A'B{'^2} + B'C{'^2}} \)  \( = \dfrac{1}{2}\sqrt {{a^2} + {{\left( {2a} \right)}^2}}  = \dfrac{{\sqrt 5 }}{2}a\)

    Vậy thể tích của khối nón đã cho là  \(V = \dfrac{1}{3}\pi {r^2}h = \dfrac{1}{3}.\pi .{\left( {\dfrac{{\sqrt 5 }}{2}a} \right)^2}.3a = \dfrac{{5\pi {a^3}}}{4}\)

    Chọn B

    ATNETWORK

Mã câu hỏi: 335305

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON