YOMEDIA
NONE
  • Câu hỏi:

    Cho hình chóp S.ABCD có đáy là hình thang, AB = 2a, AD = DC = CB = a, SA vuông góc với mặt phẳng đáy và SA = 3a (minh họa như hình bên). Gọi M là trung điểm của AB. Khoảng cách giữa hai đường thẳng SB vad DM bằng

    • A. \(\frac{3a}{4}\)                       
    • B. \(\frac{3a}{2}.\)                 
    • C. \(\frac{3\sqrt{13}a}{13}.\)                        
    • D. \(\frac{6\sqrt{13}a}{13}.\)

    Lời giải tham khảo:

    Đáp án đúng: A

    Ta có BCDM là hình bình hành (vì CD song song và bằng BM) nên \(DM=BC=\frac{1}{2}AB\) suy ra tam giác ADB vuông tại D. Tương tự tam giác ACB vuông tại C.

    Vì \(DM\text{//}CB\Rightarrow DM\text{//}\left( SBC \right)\) \(\Rightarrow d\left( DM,SB \right)=d\left( DM,\left( SBC \right) \right)=d\left( M,\left( SBC \right) \right)=\frac{1}{2}d\left( A,\left( SBC \right) \right)\)

    Ta có \(\left\{ \begin{array}{l}
    BC \bot AC\\
    BC \bot SA
    \end{array} \right. \Rightarrow BC \bot \left( {SAC} \right) \Rightarrow \left( {SBC} \right) \bot \left( {SAC} \right)\) , do đó gọi H là hình chiếu vuông góc của A lên SC thì \(AH\bot \left( SBC \right)\Rightarrow d\left( A,\left( BC \right) \right)=AH\)

    Trong tam giác vuông SAC ta có \(\frac{1}{A{{H}^{2}}}=\frac{1}{S{{A}^{2}}}+\frac{1}{A{{C}^{2}}}=\frac{1}{9{{a}^{2}}}+\frac{1}{3{{a}^{2}}}=\frac{4}{9{{a}^{2}}}\Rightarrow AH=\frac{3a}{2}\)

    Vậy\(d\left( SB,DM \right)=\frac{3a}{4}\)

     

    ATNETWORK

Mã câu hỏi: 150896

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON