-
Câu hỏi:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông, \(SA = a\sqrt 6 \) và SA vuông góc với mặt phẳng (ABCD), góc giữa SC và mặt phẳng (ABCD) bằng 600. Bán kính mặt cầu ngoại tiếp hình chóp S.ABCD bằng
- A. \(4a\sqrt 2 .\)
- B. \(8a\sqrt 2 .\)
- C. \(a\sqrt 2 .\)
- D. \(2a\sqrt 2 .\)
Lời giải tham khảo:
Đáp án đúng: C
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC
- Cho khối chóp S.ABC có SA vuông góc với mặt phẳng (ABC), \(SA = a\sqrt 3 \), tam giác ABC vuông cân tại A và \(BC = a\sqrt 3 \).
- Cho hàm số \(y = a{x^4} + b{x^2} + c\) có đồ thị như hình vẽ bên dưới.Mệnh đề nào dưới đây đúng?
- Khối bát diện đều (như hình vẽ bên dưới) thuộc khối đa diện nào?
- Cho hình nón có bán kính đáy bằng a, góc ở đỉnh bằng 900. Độ dài đường sinh của hình nón đã cho bằng
- Cho a là số thực dương khác 1. Giá trị của biểu thức \({\log _3}(3a) - 3{\log _a}\sqrt[3]{a}\) bằng
- Cho hàm số y = f(x) có đồ thị như hình vẽ bên dưới.Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
- Cho khối chóp tứ giác đều có cạnh đáy bằng a và cạnh bên bằng \(a\sqrt 3 \). Thể tích của khối chóp đã cho bằng
- Cho khối lăng trụ tam giác đều có cạnh đáy bằng \(a\sqrt 2 \) và mỗi mặt bên đều có diện tích bằng 4a2.
- Tập nghiệm của bất phương trình \({\log _{\frac{1}{2}}}\left( {3x - 2} \right) > {\log _{\frac{1}{2}}}\left( {4 - x} \right)\) là
- Cho hàm số y = f(x) có đạo hàm là \(f\left( x \right) = \left( {x - 1} \right)\left( {x - 2} \right){\left( {x - 3} \right)^4}.
- Cho hàm số y = f(x) liên tục trên R\{2} và có bảng biến thiên như sau:Số các đường tiệm cận của đồ thị hàm số
- Đạo hàm của hàm số \(y = \ln \left( {{x^2} + {e^2}} \right)\) là
- Cho khối lăng trụ đứng ABC.ABC có tam giác ABC vuông tại A, \(AB = 2,\,\,AC = 2\sqrt 2 \) và BC = 4.
- Cho mặt cầu (S) có diện tích bằng \(4\pi {a^2}.\) Thể tích của khối cầu (S) bằng
- Cho hàm số y = f(x) xác định liên tục trên đoạn [-2;2] và có đồ thị như hình vẽ bên dưới.
- Đường tiệm cận đứng của đồ thị hàm số \(y = \frac{{{x^2} + 8}}{{{x^3} - 8}}\) là
- Cho hàm số có bảng biến thiên như sau:Hàm số đã cho là
- Tổng tất cả các nghiệm của phương trình \({3^{{x^2} - 3x + 4}} = 9\) là
- Giá trị lớn nhất của hàm số \(y = {x^3} - 12x + 2\) trên đoạn [-3;0] bằng
- Có bao nhiêu hình đa diện trong các hình dưới đây?
- Cho hàm số y = f(x) có đạo hàm trên R và f(x) có đồ thị như hình vẽ bên dưới.
- Biết biểu thức \(\sqrt[5]{{{x^3}\sqrt[3]{{{x^2}\sqrt x }}}}\,\,\left( {x > 0} \right)\) được viết dưới dạng lũy thừa với
- Cho tam giác ABC vuông tại A. Khi quay tam giác ABC quanh cạnh AB thì đường gấp khúc BCA tạo thành
- Cho mặt cầu (S) tâm O, bán kính R = 3. Một mặt phẳng (P) cắt (S) theo giao tuyến là đường tròn (C) sao cho khoảng cách từ điểm O đến (P) bằng 1. Chu vi đường tròn (C) bằng
- Cho a, b, c là các số thực dương khác 1. Mệnh đề nào dưới đây sai?
- Hàm số nào sau đây có đồ thị là hình vẽ bên dưới?
- Khi quay hình chữ nhật ABCD xung quanh cạnh AB thì đường gấp khúc ABCD tạo thành
- Một hình trụ có diện tích toàn phần là \(10\pi {a^2}\) và bán kính đáy bằng a, chiều cao của hình trụ đã cho bằng
- Cho hàm số y = f(x) có bảng biến thiên như sau, giá trị cực đại của hàm số đã cho bằng?5
- Tập xác định của hàm số \(y = {({x^2} + 3x - 4)^{ - \pi }}\) là
- Tất cả giá trị của tham số m sao cho hàm số \(y = \frac{{{x^2} + mx + 1}}{{x + m}}\) đạt cực tiểu tại điểm x = 2 là
- Cho hình chóp S.ABCD có đáy ABCD là hình vuông, \(SA = a\sqrt 6 \) và SA vuông góc với mặt phẳng (ABCD), góc giữa SC và mặt phẳng (ABCD) bằng 600. Bán kính mặt cầu ngoại tiếp hình chóp S.ABCD bằng
- Biết đồ thị của hàm số \(y = \frac{{(2m - 1)x + 3}}{{x - m + 1}}\) (m là tham số) có hai đường tiệm cận.
- Ông An mua một chiếc ô tô giá 700 triệu đồng. Ông An trả trước 500 triệu đồng, phần tiền còn lại được thanh toán theo phương thức trả góp với một số tiền cố định hàng tháng, lãi suất 0,75%/tháng. Hỏi hàng tháng, ông An phải trả số tiền là bao nhiêu (làm tròn đến nghìn đồng) để sau đúng 2 năm thì ông trả hết nợ? (Giả sử lãi suất không thay đổi trong suốt thời gian này)
- Cho a, b là hai số thực khác 0 thỏa mãn \({\left( {\frac{1}{{64}}} \right)^{{a^2} + 4ab}} = {\left( {\sqrt[3]{{256}}} \right)^{3{a^2} - 10ab}
- Cho khối chóp S.ABC có đáy ABC là tam giác đều cạnh a¸ M là trung điểm của BC, hình chiếu vuông góc của S trên mặt phẳng (ABC) trùng với trung điểm H của đoạn thẳng AM, góc giữa mặt phẳng (SBC) và mặt phẳng (ABC) bằng 600. Thể tích của khối chóp S.ABC bằng
- Tìm tất cả các giá trị của tham số m sao cho phương trình \({x^3} - 3x + 1 + m = 0\) có ba nghiệm thực phân biệt.
- Biết giá trị lớn nhất của hàm số \(y = - {x^2} + 4x - m\) trên đoạn [-1;3] bằng 10. Giá trị của tham số m là
- Tất cả các giá trị của tham số m sao cho hàm số \(y = {x^3} - m{x^2} - (m - 6)x + 1\) đồng biến trên khoảng (0;4) là
- Cho hàm số f(x) nghịch biến trên R. Giá trị nhỏ nhất của hàm số \(g(x) = {e^{3{x^2} - 2{x^3}}} - f(x)\) trên đoạn [0;1] bằng
- Cho a, b, c là các số nguyên dương. Giả sử \({\log _{18}}(2430) = a{\log _{18}}3 + b{\log _{18}}5 + c\).
- Cho hình trụ (T) có chiều cao bằng 8a. Một mặt phẳng \((\alpha )\) song song với trục cà cách trục của hình trụ này một khoảng bằng 3a, đồng thời \((\alpha )\) cắt (T) theo thiết diện là một hình vuông. Diện tích xung quanh của hình trụ đã cho bằng
- Đặt S = (a;b) là tập nghiệm của bất phương trình \(3{\log _2}(x + 3) - 3 \le {\log _2}{(x + 7)^3} - {\log _2}{(2 - x)^3}\).
- Biết phương trình \({9^x} - {2.12^x} - {16^x} = 0\) có một nghiệm dạng \(x = {\log _{\frac{a}{4}}}\left( {b + \sqrt c } \right)\), với a, b, c là các số nguyên dương. Giá trị của biểu thức a + 2b + 3c bằng
- Cho khối lăng trụ ABC.A'B'C' có đáy là tam giác đều cạnh a, hình chiếu vuông góc của A' trên mặt phẳng (ABC) trùng với trung điểm của cạnh AB, góc giữa đường thẳng A'A và mặt phẳng (ABC) bằng 600. Thể tích khối lăng trụ ABC.A'B'C' bằng
- Một hòn đảo ở vị trí C cách bờ biển d một khoảng BC = 4km. Trên bờ biển d người ta xây một nhà máy điện tại vị trí A. Để kéo đường dây điện ra ngoài đảo, người ta đặt một trụ điện ở vị trí S trên bờ biển (như hình vẽ). Biết rằng khoảng cách từ B đến A là 16 km, chi phí để lắp đặt mỗi km dây điện dưới nước là 20 triệu đồng và lắp đặt ở đất liền là 12 triệu đồng. Hỏi trụ điện cách nhà máy điện một khoảng bao nhiêu để chi phí lắp đặt thấp nhất?
- Người ta thiết kế một chiếc thùng hình trụ có thể tích V cho trước. Biết rằng chi phí làm mặt đáy và nắp của thùng bằng nhau và gấp 3 lần chi phí làm mặt xung quanh của thùng (chi phí cho mỗi đơn vị diện tích). Gọi h, r lần lượt là chiều cao và bán kính đáy của thùng. Tỉ số \(\frac{h}{r}\) bằng bao nhiêu để chi phí sản xuất chiếc thùng đã cho thấp nhất?
- Tất cả giá trị của tham số m sao cho bất phương trình \({\log _{0,02}}\left( {{{\log }_2}\left( {{3^x} + 1} \right)} \right) > {\lo
- Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh 3a, SA = a, SA vuông góc với mặt phẳng (ABC).
- Có bao nhiêu giá trị nguyên cảu tham số m để đường thẳng y = - x + m cắt đồ thị hàm số \(y = \frac{{x - 2}}{{x - 1}}\)&nb