YOMEDIA
NONE
  • Câu hỏi:

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a, \(SA\bot \left( ABCD \right),SA=AC\). Bán kính mặt cầu ngoại tiếp hình chóp bằng: 

    • A. \(2a\sqrt{2}\)    
    • B. \(a\)     
    • C. \(2a\)    
    • D. \(a\sqrt{2}\)  

    Lời giải tham khảo:

    Đáp án đúng: C

    Do \(ABCD\) là hình vuông cạnh \(2a\) nên \(AC=\sqrt{A{{D}^{2}}+D{{C}^{2}}}=2a\sqrt{2}.\) Do đó \(SA=2a\sqrt{2}.\) Do \(SA\bot \left( ABCD \right)\Rightarrow SA\bot AC.\) Do đó \(\Delta SAC\) là tam giác vuông cân. Gọi \(H\) là trung điểm của \(SC.\) Gọi \(O\) là tâm của hình vuông \(ABCD.\) Khi đó \(OH\) là đường trung bình của \(\Delta SAC.\) Do đó \(HO//SA.\) Kết hợp với \(SA\bot \left( ABCD \right)\) ta nhận được \(HO\bot \left( ABCD \right).\) Vì vậy \(HO\bot AC,\,HO\bot BD.\)

    Áp dụng định lý Py-ta-go cho tam giác vuông \(\Delta HOA,\Delta HOB\) ta có \(H{{B}^{2}}=H{{O}^{2}}+O{{B}^{2}}=H{{O}^{2}}+O{{A}^{2}}=H{{A}^{2}}.\)

    Tương tự ta có \(HA=HB=HC=HD=HS.\) Vậy \(H\) là tâm mặt cầu ngoại tiếp \(S.ABCD.\)

    Ta có \(AH=\frac{1}{2}SC=\frac{1}{2}\sqrt{S{{A}^{2}}+A{{C}^{2}}}=\frac{1}{2}\sqrt{{{\left( 2a\sqrt{2} \right)}^{2}}+{{\left( 2a\sqrt{2} \right)}^{2}}}=2a.\) Vậy bán kính mặt cầu ngoại tiếp \(S.ABCD\) là \(2a.\)

    Chọn đáp án C.

    ATNETWORK

Mã câu hỏi: 420342

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON