-
Câu hỏi:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A,AB=a, AC=2a, SC=3a. SA vuông góc với đáy (ABC). Tính thể tích V của khối chóp S.ABC.
- A. \(V=\frac{{{a^3}\sqrt 3 }}{{12}}\)
- B. \(V=\frac{{{a^3}\sqrt 3 }}{4}\)
- C. \(V=\frac{{{a^3}\sqrt 5 }}{3}\)
- D. \(V=\frac{{{a^3}}}{4}\)
Đáp án đúng: C
Tam giác SAC vuông tại A nên:
\(SA = \sqrt {S{C^2} - A{C^2}} = \sqrt {{{\left( {3a} \right)}^2} - {{\left( {2a} \right)}^2}} = a\sqrt 5\)
Khi đó \({V_{SABC}} = \frac{1}{3}.SA.{S_{ABC}} = \frac{1}{3}.a\sqrt 5 .\frac{1}{2}.a.2{\rm{a}} = \frac{{{a^3}\sqrt 5 }}{3}\)
YOMEDIA
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC VỀ TÍNH THỂ TÍCH KHỐI ĐA DIỆN BẰNG CÁCH TRỰC TIẾP
- Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D; biết AB = AD = 2a, CD = a, góc giữa hai mặt phẳng (SBC) và (ABCD) bằng 60
- Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, biết SA vuông góc (ABCD)
- Tìm nhận xét đúng về thể tích khối lăng trụ và thể tích khối chóp có diện tích đáy là B, chiều cao h
- Cho hình chóp S.ABC có tam giác ABC vuông cân tại A, BC=a, tam giác SBC đều và nằm trong mặt phẳng vuông góc với mặt phẳng (ABC)
- Tính thể tích V của khối lăng trụ đều ABC.A’B’C’ có tất cả các cạnh bằng a
- Tính thể tích hình lập phương ABCD.A’B’C’D’ biết diện tích mặt chéo ACC’A’ bằng 2sqrt(2)a^2
- Cho hình chóp S.ABCD có ABCD là hình vuông cạnh a, SA vuông góc với mặt phẳng đáy (ABCD). Biết góc giữa SC và mặt phẳng (ABCD) bằng 60
- Kim tự tháp này là một khối chóp tứ giác đều có chiều cao 154m; độ dài cạnh đáy là 270m
- Tính thể tích của khối lăng trụ tam giác đều có tất cả các cạnh đều bằng a
- Tính thể tích V của hình hộp ABCD.A'B'C'D biết AB=3cm; AD=6cm và độ dài đường chéo AC'=9cm