YOMEDIA
NONE
  • Câu hỏi:

    Cho hàm số \(y = {x^3} - 11x\) có đồ thị là (C). Gọi M1 là điểm trên (C) có hoành độ x1 = -2. Tiếp tuyến của (C) tại M1 cắt (C) tại điểm M2 khác M1, tiếp tuyến của (C) tại M2 cắt (C) tại điểm M3 khác M2,..., tiếp tuyến của (C) tại Mn-1 cắt (C) tại điểm Mn khác \({M_{n - 1}}\,\left( {n \in N,n \ge 4} \right)\). Gọi \(\left( {{x_n};{y_n}} \right)\) là tọa độ của điểm Mn. Tìm n sao cho \(11{x_n} + {y_n} + {2^{2019}} = 0\)

    • A. n = 675
    • B. n = 673
    • C. n = 674
    • D. n = 672

    Lời giải tham khảo:

    Đáp án đúng: B

    ATNETWORK

Mã câu hỏi: 82621

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON