YOMEDIA
NONE
  • Câu hỏi:

    Cho hàm số\(y=\frac{2x-1}{x+2}\)có đồ thị (C ). Tiếp tuyến của đồ thị (C ) tại điểm \(M\left( -1;-3 \right)\) tạo với hai đường tiệm cận của đồ thị (C ) một tam giác \(\Delta \). Khẳng định nào sau đây đúng? 

    • A. Tam giác \(\Delta \) có diện tích bằng 10 
    • B. Tam giác \(\Delta \) có chu vi bằng \(10+2\sqrt{26}\) 
    • C. Tam giác \(\Delta \) là tam giác vuông có một góc bằng \({{60}^{0}}\) 
    • D. Tam giác \(\Delta \) vuông cân 

    Lời giải tham khảo:

    Đáp án đúng: A

    Đồ thị hàm số đã cho có TCĐ x = –2; TCN y = 2

    Có \(y'=\frac{5}{{{\left( x+2 \right)}^{2}}};y'\left( -1 \right)=5\). Phương trình tiếp tuyến tại M: \(y=5\left( x+1 \right)-3\Leftrightarrow y=5x+2\)

    Tọa độ các đỉnh của ∆: \(I\left( -2;2 \right),A\left( -2;-8 \right),B\left( 0;2 \right)\)

    Tam giác ∆ là tam giác vuông tại I có IA = 10, IB = 2 nên có diện tích bằng 10

    Chọn đáp án A

    ATNETWORK

Mã câu hỏi: 418243

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON