YOMEDIA
NONE
  • Câu hỏi:

    Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) thỏa mãn \(\int\limits_0^7 {f\left( x \right)dx} {\rm{\;}} = 10\) và \(\int\limits_0^3 {f\left( x \right)dx} {\rm{\;}} = 6\). Tính giá trị của \(I = \int\limits_{ - 2}^3 {f\left| {3 - 2x} \right|dx} \)?

    • A. 16
    • B. 3
    • C. 15
    • D. 8

    Lời giải tham khảo:

    Đáp án đúng: D

    Phương pháp:

    - Tính tích phân bằng phương pháp đổi biến, đặt \(t = 3 - 2x\).

    - Sử dụng tính chất: \(\int\limits_a^b {f\left( x \right)dx} {\rm{\;}} + \int\limits_b^c {f\left( x \right)dx} {\rm{\;}} = \int\limits_a^c {f\left( x \right)dx} \), chia cận phù hợp để phá trị tuyệt đối.

    Cách giải:

    Đặt \(t = 3 - 2x \Rightarrow dt = {\rm{\;}} - 2dx\). Đổi cận \(\left\{ {\begin{array}{*{20}{l}}{x = {\rm{\;}} - 2 \Rightarrow t = 7}\\{x = 3 \Rightarrow t = {\rm{\;}} - 3}\end{array}} \right.\).

    Khi đó ta có:

    \(\begin{array}{*{20}{l}}{I = - \dfrac{1}{2}\int\limits_7^{ - 3} {f\left( {\left| t \right|} \right)dt} = \dfrac{1}{2}\int\limits_{ - 3}^7 {f\left( {\left| t \right|} \right)dt} }\\{{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} = \dfrac{1}{2}\left( {\int\limits_{ - 3}^0 {f\left( { - t} \right)dt} + \int\limits_0^7 {f\left( t \right)dt} } \right)}\\{{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} = \dfrac{1}{2}\left( { - \int\limits_3^0 {f\left( x \right)dx} + \int\limits_0^7 {f\left( x \right)dx} } \right)}\\{{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} = \dfrac{1}{2}\left( {\int\limits_0^3 {f\left( x \right)dx} + \int\limits_0^7 {f\left( x \right)dx} } \right)}\\{{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} = \dfrac{1}{2}\left( {6 + 10} \right) = 8}\end{array}\)

    Chọn D.

    ATNETWORK

Mã câu hỏi: 467593

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON