YOMEDIA
NONE
  • Câu hỏi:

    Cho hai vật nhỏ A và B có khối lượng lần lượt là m1 = 900 g, m2 = 4 kg đặt trên mặt phẳng nằm ngang. Hệ số ma sát trượt giữa A, B và mặt phẳng ngang đều là m = 0,1; coi hệ số ma sát nghỉ cực đại bằng hệ số ma sát trượt. Hai vật được nối với nhau bằng một lò xo nhẹ có độ cứng k = 15 N/m; B tựa vào tường thẳng đứng. Ban đầu hai vật nằm yên và lò xo không biến dạng. Vật nhỏ C có khối lượng m = 100 g bay dọc theo trục của lò xo với vận tốc \(\vec{v}\) đến va chạm hoàn toàn mềm với A (sau va chạm C dính liền với A). Bỏ qua thời gian va chạm. Lấy g  = 10 m/s2.  Giá trị nhỏ nhất của v để B có thể dịch chuyển sang trái là

    • A. 1,8 m/s       
    • B. 18 m/s           
    • C. 9 m/s              
    • D. 18 cm/s

    Lời giải tham khảo:

    Đáp án đúng: B

    Để B có thể dịch sang trái thì lò xo phải giãn một đoạn ít nhất là xo sao cho:

    Fđh = Fms \(\Rightarrow \)kxo = mm2g \(\Rightarrow \)150xo = 40\(\Rightarrow \)\({{\text{x}}_{\text{0}}}=\frac{4}{15}\)m.

    Như thế, vận tốc vo mà hệ (m1 + m) có khi bắt đầu chuyển động phải làm cho lò xo có độ co tối đa x sao cho khi nó dãn ra thì độ dãn tối thiểu phải là xo.

    Suy ra:

    \(\frac{1}{2}k{{x}^{2}}=\mu ({{m}_{1}}+m)g(x+{{x}_{o}})+\frac{1}{2}kx_{o}^{2}\Rightarrow 75{{x}^{2}}-10x-8=0\Rightarrow x=0,4\text{ }m.\)

    Theo định luật bảo toàn năng lượng ta có: \(\frac{1}{2}({{m}_{1}}+m)v_{o}^{2}-\frac{1}{2}k{{x}^{2}}=\mu ({{m}_{1}}+m)gx.\)

    Từ đó tính được: vo min » 1,8 m/s \(\Rightarrow \)vmin » 18 m/s.

    ATNETWORK

Mã câu hỏi: 358450

Loại bài: Bài tập

Chủ đề :

Môn học: Vật lý

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON