-
Câu hỏi:
Cho hàm số \(y=f\left( x \right)\) có đạo hàm \(f'\left( x \right)={{x}^{2}}+x-2\). Hỏi hàm số \(g\left( x \right)=f\left( {{x}^{2}}-3 \right)\) có bao nhiêu điểm cực trị?
- A. 2
- B. 3
- C. 4
- D. 5
Lời giải tham khảo:
Đáp án đúng: D
Chọn D
Ta có:
\(f'\left( x \right)=0\Leftrightarrow {{x}^{2}}+x-2=0\\\Leftrightarrow \left\{ \begin{matrix} x=1 \\ x=-2 \\ \end{matrix} \right.\)
\(g'\left( x \right)=(2x).f'\left( {{x}^{2}}-3 \right)\\\Leftrightarrow \left[ \begin{matrix} 2x=0\text{ (1)} \\ f'\left( {{x}^{2}}-3 \right)=0\text{ (2)} \\ \end{matrix} \right.\)
\((1)\Leftrightarrow 2x=0\Leftrightarrow x=0\) \(\left( 2 \right)\Leftrightarrow f'\left( {{x}^{2}}-3 \right)=0\\ \Leftrightarrow \left[ \begin{matrix} {{x}^{2}}-3=1 \\ {{x}^{2}}-3=-2 \\ \end{matrix} \right.\Leftrightarrow \left[ \begin{matrix} x=\pm 2 \\ x=\pm 1 \\ \end{matrix} \right.\)
\(g'\left( x \right)=0\) có 5 nghiệm \(\Rightarrow \) có 5 cực trị.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC
- Diện tích của mặt cầu có bán kính bằng \(5\) là
- Trong không gian \(Oxyz\), cho tam giác \(ABC\) có \(A\left( -1;2;0 \right)\), \(B\left( 3;1;1 \right)\) và \(C\left( 1;6;5 \right)\). Trọng tâm tam giác \(ABC\) có tọa độ là
- Cho \(\int\limits_{0}^{2}{f\left( x \right)dx}=4\); \(\int\limits_{0}^{2}{g\left( x \right)dx}=1\).
- Một khối trụ có bán kính đáy bằng \(2\) và chiều cao bằng \(3\). Thể tích khối trụ bằng
- Cho các số phức \(z=\,-1+2i,\,w=\,3-i\). Phần ảo của số phức \({{s}_{z}}=\,z.\overline{w}\) bằng
- Cho hàm số bậc bốn \(y=\,f(x)\) có đồ thị như hình vẽ bên.
- Cho số phức \(z=\,2-3i\). Điểm biểu diễn của số phức \(\overline{z}\) là
- Cho hàm số \(y=\,f(x)\) liên tục trên \(\mathbb{R}\) và có bảng xét dấu đạo hàm như hình dưới. Hàm số đã cho có bao nhiêu điểm cực trị?
- Tập nghiệm của phương trình \({{3}^{{{x}^{2}}-3x}}=1\) là
- Có bao nhiêu số tự nhiên gồm 2 chữ số phân biệt?
- Cho hàm số bậc ba \(y=f\left( x \right)\) có đồ thị như hình vẽ bên
- Cho hàm số \(y=f\left( x \right)\) có đạo hàm \({f}'\left( x \right)={{x}^{2}}\left( {{x}^{2}}-4 \right),\forall x\in \mathbb{R}\).
- Đường tiệm cận đứng của đồ thị hàm số \(y=\frac{2x-1}{x+2}\) là
- Cho hàm số \(y=f\left( x \right)\) có đồ thị như hình vẽ bên. Gọi \(a\), \(A\) lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của \(f\left( x \right)\) trên đoạn \(\left[ -5;1 \right]\).
- Cho cấp số cộng \(\left( {{u}_{n}} \right)\) thỏa mãn \({{u}_{4}}-{{u}_{1}}=6\). Công sai của \(\left( {{u}_{n}} \right)\) bằng
- Trong không gian \(Oxyz\), cho hai điểm \(A\left( 1;1;2 \right)\) và \(B\left( -1;3;3 \right)\). Một véc-tơ chỉ phương của đường thẳng \(AB\) có tọa độ là
- Giả sử \(a\), \(b\) là các số thực dương tùy ý, \({{\log }_{4}}\left( {{a}^{6}}{{b}^{2}} \right)\)
- Mệnh đề nào sau đây đúng?
- Đạo hàm của hàm số \(f\left( x \right)={{3}^{2-x}}\)
- Cho khối lăng trụ \(ABC.{A}'{B}'{C}'\) có tất cả các cạnh bằng \(\sqrt{2}\). Cạnh bên tạo với mặt phẳng đáy góc \({{60}^{\circ }}\). Tính thể tích khối lăng trụ \(ABC.{A}'{B}'{C}'\).
- Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(\sqrt{2}\), cạnh bên \(SA=2\) và vuông góc với mặt phẳng đáy.
- Trong không gian \(Oxyz,\) mặt phẳng đi qua ba điểm \(A\left( 1;-2;1 \right),\,\,B\left( 4;-5;1 \right)\) và \(C\left( 2;0;2 \right)\) có phương trình là
- Diện tích xung quanh của hình nón có chiều cao bằng bán kính đáy và bằng \(\sqrt{2}\) là
- Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) và \(\int\limits_{0}^{1}{f\left( 1-2x \right)}\,dx=\frac{1}{3}.\)
- Cho các số thực dương \(a,\,\,b\) thỏa mãn \({{a}^{4}}{{b}^{3}}=1.\) Giá trị của \({{\log }_{a}}\frac{{{a}^{2}}}{{{b}^{3}}}\) bằng
- Trong không gian \(Oxyz,\) cho mặt phẳng \(\left( P \right):x-2y+2z-3=0.\)
- Cho hàm số \(y=f\left( x \right)\) có đạo hàm \(f'\left( x \right)={{x}^{2}}+x-2\). Hỏi hàm số \(g\left( x \right)=f\left( {{x}^{2}}-3 \right)\) có bao nhiêu điểm cực trị?
- Gọi \(S\) là tập hợp gồm 18 điểm được đánh dấu trong bàn cờ ô ăn quan như nhìn bên. Chọn ngẫu nhiên 2 điểm thuộc \(S\)
- Cho hình lập phương \(ABCD.A'B'C'D'\) có độ dài cạnh bằng \(\sqrt{6}\). Khoảng cách giữa 2 đường thẳng \(BD\) và \(CC'\) bằng
- Gọi \({{z}_{1}},{{z}_{2}}\) là các nghiệm phức của phương trình \({{z}^{2}}-4z+13=0\), trong đó \({{z}_{2}}\) có phần ảo dương
- Gọi \(\left( D \right)\) là hình phẳng giới hạn bởi các đường \(y=0,y=x\) và \(y=\sqrt{x+2}\). Diện tích \(S\) của \(\left( D \right)\) được tính theo công thức nào dưới đây?
- Tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số \(y=\frac{\sqrt{x+2}-1}{{{x}^{2}}-4}\) là
- Cho hàm số bậc bốn \(y=f\left( x \right)\) có đồ thị như hình bên. Hỏi phương trình \(f\left( 1-x \right)=1\) có bao nhiêu nghiệm thuộc khoảng \(\left( 0;\,+\infty \right)\)?
- Cho hàm số bậc bốn \(y=f\left( x \right)\) có đồ thị hàm số \(y={f}'\left( x \right)\) như hình bên
- Giả sử \(z,w\) là hai số phức thỏa mãn \(\left| z \right|=\left| w \right|=\frac{5}{2},\,\,\,\left| z-w \right|=4\). Trên mặt phẳng \(Oxy\)
- Giả sử \(a,b\) là các số thực dương. Gọi \({{V}_{1}}\) là thể tích khối tròn xoay tạo thành khi quay hình phẳng giới hạn bởi các đường thẳng \(y=a\sqrt{x}\), \(y=0\), \(x=1\) quanh trục \(Ox\)
- Số nghiệm nguyên của bất phương trình \(\left( {{3}^{{{x}^{2}}-1}}-{{27}^{x+1}} \right)\left[ {{\log }_{3}}\left( x+8 \right)-2 \right]\le 0\) là
- Trong không gian \(Oxyz\), cho đường thẳng \(d:\frac{x-1}{3}=\frac{y}{-2}=\frac{z+1}{1}\) và hai điểm \(A\left( 2;0;3 \right),B\left( 4;2;1 \right)\)
- Trong không gian \(Oxyz\), cho đường thẳng \(\Delta :\frac{x-5}{3}=\frac{y}{2}=\frac{z+25}{-2}\) và điểm \(M\left( 2;3;-1 \right)\).
- Gọi \(m\) là giá trị nhỏ nhất của hàm số \(f(x)=\frac{ax+32-a}{{{2}^{x}}},(a\in \mathbb{R})\) trên đoạn \(\left[ -2;1 \right]\).
- Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông tại \(B,\,AB=1\) và \(AC=2\). Cạnh bên \(SA\) vuông góc với mặt phẳng đáy.
- Cho mặt cầu có bán kính bằng \(3\). Một khối nón có chiều cao thay đổi sao cho đỉnh và đường tròn
- Cho hai hàm số \(f\left( x \right)=a{{x}^{4}}+b{{x}^{3}}+c{{x}^{2}}+d\)
- Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như hình vẽ sau:
- Có bao nhiêu cặp số nguyên \(\left( x;\,y \right);\,y\in \left[ 0;\,{{2021}^{3}} \right]\) thỏa mãn phương trình \({{\log }_{4}}\left( x+\frac{1}{2}+\sqrt{x+\frac{1}{4}} \right)={{\log }_{2}}\left( y-x \right)\)?
- Phương trình \(\sqrt{2021+{{\log }_{8}}x}-\sqrt{4{{\log }_{8}}x}={{\log }_{2}}x-2021\) có bao nhiêu nghiệm nguyên?
- Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông, \(AB=1\), cạnh bên \(SA=1\) và vuông góc với mặt phẳng đáy \(\left( ABCD \right)\).
- Xét các số thực \(a\) thay đổi thỏa mãn \(\left| a \right|\le 2\) và \({{z}_{1}}\), \({{z}_{2}}\) là các nghiệm phức của phương trình \({{z}^{2}}-az+1=0\).
- Trong không gian với hệ trục tọa độ \(Oxyz\), cho điểm \(A\left( 2\ ;\ 1\ ;\ 3 \right)\) và mặt phẳng \(\left( P \right):x+my+\left( 2m+1 \right)z-m-2=0\), với \(m\) là tham số.
- Cho hàm số \(y=f\left( x \right)\) có đạo hàm là \({f}'\left( x \right)=\left( {{x}^{2}}+9x \right)\left( {{x}^{2}}-9 \right),\)với mọi \(x\in \mathbb{R}\).