-
Câu hỏi:
Cho các dạng đồ thị của hàm số \(y=ax^3+bx^2+cx+d\) như sau:
Và các điều kiện:
\(1.\left\{\begin{matrix} a>0 \ \ \ \ \ \ \ \ \ \\ b^2-3ac>0 \end{matrix}\right.\) \(2.\left\{\begin{matrix} a>0 \ \ \ \ \ \ \ \ \ \\ b^2-3ac<0 \end{matrix}\right.\)
\(3.\left\{\begin{matrix} a<0 \ \ \ \ \ \ \ \ \ \\ b^2-3ac>0 \end{matrix}\right.\) \(4.\left\{\begin{matrix} a<0 \ \ \ \ \ \ \ \ \ \\ b^2-3ac<0 \end{matrix}\right.\)
Hãy chọn sự tương ứng đúng giữa các dạng đồ thị và điều kiện.- A. A→ 2;B →4;C →1;D→ 3
- B. A →3;B →4;C → 2;D →1
- C. A →1;B →3;C → 2;D →4
- D. A →1;B → 2;C → 3;D → 4
Đáp án đúng: A
Đáp án A
YOMEDIA
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC VỀ HÀM SỐ BẬC 3
- Đường cong bên là đồ thị của một hàm số trong bốn hàm số được liệt kể ở bốn phương án A, B, C, D. Hỏi đó là hàm số nào? y=-x^3+3x^2-1
- Kết luận nào sau đây là không đúng về đồ thị hàm số y=x^3+bx^2+cx+d
- Tìm toạ độ điểm uốn của đồ thị hàm số y=x^3-3x+5
- Nếu hàm số f(x) đạt cực đại tại x0 thì x0 được gọi là điểm cực đại của hàm số
- Cho bảng biến thiên của hàm số f(x), tìm m để phương trình f(x)=3 có 3 nghiệm phân biệt
- Tìm hàm số có đồ thị cho trước y=x(x+3)^2+4
- Nhận xét về các điểm cực trị với đồ thị hàm số cho trước
- Cho bảng biến thiên của hàm số, tìm nhận xét đúng về cực trị, giá trị lớn nhất, giá trị nhỏ nhất
- Tìm hàm số với đồ thị cho trước y=x^3+x+1
- Đồ thị hàm số có điểm cực tiểu A(-1; -1) và điểm cực đại B(1; 3)