YOMEDIA
UREKA
  • Câu hỏi:

    Cho biểu thức \(P = \frac{{{a^{\frac{1}{3}}}{b^{ - \frac{1}{3}}} - {a^{ - \frac{1}{3}}}{b^{\frac{1}{3}}}}}{{\sqrt[3]{{{a^2}}} - \sqrt[3]{{{b^2}}}}}\). Mệnh đề nào dưới đây đúng?

    • A. \(P = \frac{1}{{\sqrt[3]{{ab}}}}\).
    • B. \(P = \sqrt[3]{{ab}}\).
    • C. \(P = {\left( {ab} \right)^{\frac{2}{3}}}\). 
    • D. \(P =  - \frac{1}{{\sqrt[3]{{{{\left( {ab} \right)}^2}}}}}\).

    Lời giải tham khảo:

    Đáp án đúng: A

    \(\begin{array}{l}
    P = \frac{{{a^{\frac{1}{3}}}{b^{ - \frac{1}{3}}} - {a^{ - \frac{1}{3}}}{b^{\frac{1}{3}}}}}{{\sqrt[3]{{{a^2}}} - \sqrt[3]{{{b^2}}}}}\\
     = \frac{{\frac{{\sqrt[3]{a}}}{{\sqrt[3]{b}}} - \frac{{\sqrt[3]{b}}}{{\sqrt[3]{a}}}}}{{\sqrt[3]{{{a^2}}} - \sqrt[3]{{{b^2}}}}} = \frac{{\frac{{\sqrt[3]{{{a^2}}} - \sqrt[3]{{{b^2}}}}}{{\sqrt[3]{a}\sqrt[3]{b}}}}}{{\sqrt[3]{{{a^2}}} - \sqrt[3]{{{b^2}}}}}\\
     = \frac{{\sqrt[3]{{{a^2}}} - \sqrt[3]{{{b^2}}}}}{{\sqrt[3]{a}\sqrt[3]{b}}}.\frac{1}{{\sqrt[3]{{{a^2}}} - \sqrt[3]{{{b^2}}}}}\\
     = \frac{1}{{\sqrt[3]{a}\sqrt[3]{b}}} = \frac{1}{{\sqrt[3]{{ab}}}}
    \end{array}\)

    ADSENSE

Mã câu hỏi: 136

Loại bài: Bài tập

Chủ đề : Mũ và lôgarit

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 

 

 

CÂU HỎI KHÁC

ADMICRO
 

 

YOMEDIA
OFF