-
Câu hỏi:
Cho \(0 < a < b < 1\), mệnh đề nào dưới đây đúng?
- A. \({\log _b}a > {\log _a}b.\)
- B. \({\log _a}b < 0.\)
- C. \({\log _b}a < {\log _a}b.\)
- D. \({\log _a}b > 1.\)
Đáp án đúng: A
Do \(0 < a < 1\) nên hàm số \(y = {\log _a}x\) nghịch biến trên \(\left( {0; + \infty } \right)\).
Đáp án B sai, vì: Với \(b < 1 \Rightarrow {\log _a}b > {\log _a}1 \Leftrightarrow {\log _a}b > 0\).
Đáp án D sai, vì: Với \(a < b \Rightarrow {\log _a}a > {\log _a}b \Leftrightarrow {\log _a}b < 1\).
Với \(0 < a < b < 1\) ta có \(0 < {\log _a}b < 1\).
Đáp án C sai, vì: Nếu \({\log _b}a < {\log _a}b \Leftrightarrow \frac{1}{{{{\log }_a}b}} < {\log _a}b \Leftrightarrow {\left( {{{\log }_a}b} \right)^2} > 1\) (vô lí).
Đáp án A đúng, vì: Nếu \({\log _b}a > {\log _a}b \Leftrightarrow \frac{1}{{{{\log }_a}b}} > {\log _a}b \Leftrightarrow {\left( {{{\log }_a}b} \right)^2} < 1\) (luôn đúng).
YOMEDIA
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC VỀ LOGARIT VÀ HÀM SỐ LOGARIT
- Tìm giá giá trị của a để hàm số y = {log _{2a + 3}}x đồng biến trên ( {0; + infty })
- Trong các hàm số sau, hàm số nào đồng biến trên ( {1; + infty })?
- Tính {log _{12}}35 theo a, b, c biết {log _{27}}5 = a,{log _8}7 = b,{log _2}3 = c
- Kết quả rút gọn của biểu thức A =({log _b^3a + 2log _b^2a + {{log }_b}a})({log }_a}b - {{log }_{ab}}b}) - {log _b}a vvới điều kiện biểu thức tồn tại là:
- Nếu {log _8}3 = p) và ({log _3}5 = q thì log 5 bằng:
- Giả sử p và q là hai số dương sao cho {log _{16}}p = {log _{20}}q = {log _{25}}(p+q). Tìm giá trị p/q
- Tính giá trị của biểu thức A={log_a}1/a^2 với a>0 và a khác 1
- Gọi (C) là đồ thị hàm số y = log x. Tìm khẳng định đúng?
- Tính giới hạn A = mathop {lim }limits_{x o 0} frac{{{{log }_2}left( {1 + x} ight)}}{x}
- Cho {log _{frac{1}{2}}}x = frac{2}{3}{log _{frac{1}{2}}}a - frac{1}{5}{log _{frac{1}{2}}}b. Tìm x.