Nhằm giúp các em có thêm tài liệu tham khảo, chuẩn bị thật tốt trong học tập. Hoc247 đã biên soạn Đề cương ôn tập học kì 2 Phần Đại số Toán 7 sẽ giúp các em dễ dạng ôn tập lại kiến thức đã học. Mời các em cùng tham khảo.
ĐỀ CƯƠNG ÔN TẬP HK2
ĐẠI SỐ - TOÁN 7
I. Kiến thức cần nhớ
Câu 1: Dấu hiệu là gì? Đơn vị điều tra là gì? Thế nào là tấn số của mỗi giá trị? Có nhận xét gì về tổng các tần số?
Câu 2: Làm thế nào để tính số trung bình cộng của một dấu hiệu? Nêu rõ các bước tính? Ý nghĩa của số trung bình cộng? Mốt của dấu hiệu là gì?
Câu 3: Thế nào là hai đơn thức đồng dạng? Cho VD.
Câu 4: Đơn thức là gì? Đa thức là gì?
Câu 5: Phát biểu quy tắc cộng, trừ hai đơn thức đồng dạng.
Câu 6: Tìm bậc của một đơn thức, đa thức? Nhân hai đơn thức.
Câu 7: Khi nào số a được gọi là nghiệm của đa thức P(x).
II. Bài Tập
1. Dạng 1: Thu gọn biểu thức đại số
a) Thu gọn đơn thức, tìm bậc, hệ số.
Phương pháp:
Bước 1: dùng qui tắc nhân đơn thức để thu gọn.
Bước 2: xác định hệ số, bậc của đơn thức đã thu gọn.
Bài tập áp dụng : Thu gọn đơn thức, tìm bậc, hệ số.
A= \({{x}^{3}}.\left( -\frac{5}{4}{{x}^{2}}y \right).\left( \frac{2}{5}{{x}^{3}}{{y}^{4}} \right)\);
B =
b) Thu gọn đa thưc, tìm bậc, hệ số cao nhất.
Phương pháp:
Bước 1: nhóm các hạng tử đồng dạng, tính cộng, trừ các hạng tử đòng dạng.
Bước 2: xác định hệ số cao nhất, bậc của đa thức đã thu gọn.
..........
---(Để xem tiếp nội dung của đề thi các em vui lòng xem tại online hoặc đăng nhập để tải về máy)---
2. Dạng 2: Tính giá trị biểu thức đại số
Phương pháp :
Bước 1: Thu gọn các biểu thức đại số.
Bước 2: Thay giá trị cho trước của biến vào biểu thức đại số.
Bước 3: Tính giá trị biểu thức số.
Bài tập áp dụng :
Bài 1 : Tính giá trị biểu thức
a. A = 3x3 y + 6x2y2 + 3xy3 tại
b. B = x2 y2 + xy + x3 + y3 tại x = –1; y = 3
..........
---(Để xem tiếp nội dung của đề thi các em vui lòng xem tại online hoặc đăng nhập để tải về máy)---
3. Dạng 3 : Cộng, trừ đa thức nhiều biến
Phương pháp :
Bước 1: viết phép tính cộng, trừ các đa thức.
Bước 2: áp dung qui tắc bỏ dấu ngoặc.
Bước 3: thu gọn các hạng tử đồng dạng ( cộng hay trừ các hạng tử đồng dạng)
Bài tập áp dụng:
Bài 1 : Cho đa thức :
A = 4x2 – 5xy + 3y2; B = 3x2 + 2xy - y2
Tính A + B; A – B
..........
---(Để xem tiếp nội dung của đề thi các em vui lòng xem tại online hoặc đăng nhập để tải về máy)---
4. Dạng 4: Cộng trừ đa thức một biến
Phương pháp:
Bước 1: thu gọn các đơn thức và sắp xếp theo lũy thừa giảm dần của biến.
Bước 2: viết các đa thức sao cho các hạng tử đồng dạng thẳng cột với nhau.
Bước 3: thực hiện phép tính cộng hoặc trừ các hạng tử đồng dạng cùng cột.
Chú ý: A(x) - B(x)=A(x) +[-B(x)]
Bài tập áp dụng :
Bài 1: Cho đa thức
A(x) = 3x4 – 3/4x3 + 2x2 – 3
B(x) = 8x4 + 1/5x3 – 9x + 2/5
Tính : A(x) + B(x); A(x) - B(x);
B(x) - A(x);
..........
---(Để xem tiếp nội dung của đề thi các em vui lòng xem tại online hoặc đăng nhập để tải về máy)---
5. Dạng 5 : Tìm nghiệm của đa thức 1 biến
a) Kiểm tra 1 số cho trước có là nghiệm của đa thức một biến không
Phương pháp :
Bước 1: Tính giá trị của đa thức tại giá trị của biến cho trước đó.
Bước 2: Nếu giá trị của đa thức bằng 0 thì giá trị của biến đó là nghiệm của đa thức.
b) Tìm nghiệm của đa thức một biến
Phương pháp :
Bước 1: Cho đa thức bằng 0.
Bước 2: Giải bài toán tìm x.
Bước 3: Giá trị x vừa tìm được là nghiệm của đa thức.
..........
---(Để xem tiếp nội dung của đề thi các em vui lòng xem tại online hoặc đăng nhập để tải về máy)---
6. Dạng 6 : Tìm hệ số chưa biết trong đa thức P(x) biết P(x0) = a
Phương pháp :
Bước 1: Thay giá trị x = x0 vào đa thức.
Bước 2: Cho biểu thức số đó bằng a.
Bước 3: Tính được hệ số chưa biết.
.........
---(Để xem tiếp nội dung của đề thi các em vui lòng xem tại online hoặc đăng nhập để tải về máy)---
Trên đây là nội dung tài liệu Đề cương ôn tập học kì 2 Phần Đại số Toán 7. Để xem thêm nhiều tài liệu tham khảo hữu ích khác các em chọn chức năng xem online hoặc đăng nhập vào trang hoc247.net để tải tài liệu về máy tính.
Hy vọng tài liệu này sẽ giúp các em học sinh ôn tập tốt và đạt thành tích cao trong học tập.
Ngoài ra các em có thể tham khảo thêm một số tư liệu cùng chuyên mục tại đây:
- Chuyên đề Những hằng đẳng thức đáng nhớ Toán 8
- Chuyên đề nâng cao Rút gọn biểu thức bằng phương pháp khử liên tiếp Toán 8
Chúc các em học tập tốt!