YOMEDIA

Bộ 4 đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Hàm Rồng

Tải về
 
NONE

Với nội dung Bộ 4 đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Hàm Rồng có đáp án do HOC247 tổng hợp để giúp các em ôn tập và củng cố các kiến thức Toán 12 đã học để chuẩn bị thật tốt cho kỳ thi sắp tới. Mời các em cùng tham khảo!

ATNETWORK

TRƯỜNG THPT HÀM RỒNG

ĐỀ  THI THỬ THPT QUỐC GIA 2021

MÔN TOÁN

Thời gian: 90 phút

 

1. ĐỀ SỐ 1

Câu 1: Tìm tập xác định  của hàm số \(y = {\left( {{x^2} - 1} \right)^{ - \,2\,}}.\)

A. \(D = \mathbb{R}.\)

B. \(D = \left( { - \,\infty ;\, - 1} \right) \cup \left( {1;\, + \infty } \right).\)

C. \(D = \left( { - \,1;\,1} \right).\)

D. \(D = \mathbb{R}\backslash \left\{ { \pm \,1} \right\}.\)

Câu 2: Cho hàm số \(y = \dfrac{{x - 3}}{{x + 2}}.\) Mệnh đề nào dưới đây đúng?

A. Hàm số nghịch trên từng khoảng xác định \(D.\)

B. Hàm số đồng biến trên từng khoảng xác định.

C. Hàm số đồng biến trên khoảng \(\left( { - \,\infty ;\, + \infty } \right).\)

D. Hàm số nghịch biến trên khoảng \(\left( { - \,\infty ;\, + \infty } \right).\)

Câu 3: Trong các biểu thức sau, biểu thức nào có nghĩa?

A. \({\left( { - \,2} \right)^{\sqrt 2 }}.\)

B. \({\left( { - \,3} \right)^{ - \,6}}.\)

C. \({\left( { - \,5} \right)^{ - \dfrac{3}{4}}}.\)

D. \({0^{ - \,3}}.\)

Câu 4: Cho cấp số nhân \(\left( {{u_n}} \right),\) biết \({u_1} = 1,\,\,{u_4} = 64.\) Tính công bội \(q\) của cấp số nhân.

A. \(q = 21.\)

B. \(q =  \pm \,4.\)

C. \(q = 4.\)

D. \(q = 2\sqrt 2 .\)

Câu 5: Cho hình chóp \(S.\,ABC\) có \(A'\) và \(B'\) lần lượt là trung điểm của \(SA\) và \(SB.\) Biết thể tích của khối chóp \(S.\,ABC\) bằng 24. Tính thể tích \(V\) của khối chóp \(S.\,A'B'C.\)

A. \(V = 12.\)

B. \(V = 8.\)

C. \(V = 6.\)

D. \(V = 3.\)

Câu 6: Tập hợp tâm các mặt cầu luôn đi qua hai điểm cố định \(A\) và \(B\) cho trước là

A. một đường thẳng

B. một mặt phẳng.                 

C. một điểm.

D. một đoạn thẳng.

Câu 7: Gọi \(S\) là tổng các nghiệm trong khoảng \(\left( {0;\pi } \right)\) của phương trình \(\sin x = \dfrac{1}{2}.\) Tính \(S.\)

A. \(S = 0.\)

B. \(S = 0.\)

C. \(S = \pi .\)

D. \(S = \dfrac{\pi }{6}.\)

Câu 8: Cho hàm số \(f\left( x \right) = {\rm{cos}}2x.\) Tính \(P = f''\left( \pi  \right).\)

A. \(P = 4.\)

B. \(P = 0.\)

C. \(P =  - \,4.\)

D. \(P =  - 1.\)

Câu 9: Mệnh đề nào dưới đây sai?

A. Hàm số \(y = \tan x\) tuần hoàn với chu kì \(\pi .\) 

B. Hàm số \(y = \cos x\) tuần hoàn với chu kì \(\pi .\)

C. Hàm số \(y = \cot x\) tuần hoàn với chu kì \(\pi .\) 

D. Hàm số \(y = \sin 2x\) tuần hoàn với chu kì \(\pi .\)

Câu 10: Trong các giới hạn hữu hạn sau, giới hạn nào có giá trị khác với các giới hạn còn lại?

A. \(\lim \dfrac{{3n - 1}}{{3n + 1}}.\)

B. \(\lim \dfrac{{2n + 1}}{{2n - 1}}.\)

C. \(\lim \dfrac{{4n + 1}}{{3n - 1}}.\)

D. \(\lim \dfrac{{n + 1}}{{n - 1}}.\)

ĐÁP ÁN

1. D

2. B

3. B

4. C

5. C

6. B

7. C

8. C

9. B

10. C

{-- Nội dung đề, đáp án từ câu 11-50 các em vui lòng xem ở phần xem online hoặc tải về --}

2. ĐỀ SỐ 2

Câu 1: Cho hai đường thẳng phân biệt \(a\) và \(b\) trong không gian. Có bao nhiêu vị trí tương đối giữa \(a\) và \(b\)?

A. 3.

B. 1.

C. 2.

D. 4.

Câu 2: Cho hình chóp \(S.\,ABC\) có cạnh bên \(SA\) vuông góc với mặt phẳng đáy \(\left( {ABC} \right).\) Biết \(SA = a,\) tam giác \(ABC\) là tam giác vuông cân tại \(A,\,\,AB = 2a.\) Tính theo \(a\) thể tích \(V\) của khối chóp \(S.\,ABC.\)

A. \(V = \dfrac{{{a^3}}}{2}.\)

B. \(V = 2{a^3}.\)

C. \(V = \dfrac{{{a^3}}}{6}.\)

D. \(V = \dfrac{{2{a^3}}}{3}.\)

Câu 3: Nếu điểm \(M\) trong không gian luôn nhìn đoạn thẳng \(AB\) cố định dưới một góc vuông thì \(M\) thuộc

A. một mặt cầu cố định.

B. một khối cầu cố định.        

C. một đường tròn cố định.

D. một hình tròn cố định.

Câu 4: Mệnh đề nào dưới đây đúng?

A. Hai đường thẳng phân biệt cùng vuông góc với một mặt phẳng thì song song.

B. Hai đường thẳng không cắt nhau và không song song thì chéo nhau.

C. Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thì song song.

D. Hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thì song song.

Câu 5: Gọi \(d\) là tiếp tuyến tại điểm cực đại của đồ thị hàm số \(y = {x^4} - 3{x^2} + 2.\) Mệnh đề nào dưới đây đúng?

A. \(d\) song song với đường thẳng \(y = 3.\)

B. \(d\) song song với đường thẳng \(x = 3.\)

C. \(d\) có hệ số góc âm.

D. \(d\) có hệ số góc dương.

Câu 6: Có tất cả bao nhiêu giá trị nguyên của tham số \(m\) để hàm số \(y = \dfrac{1}{3}{x^3} - \dfrac{1}{2}m{x^2} + x + 2018\) đồng biến trên \(\mathbb{R}?\)

A. 5.                                        B. 3.

C. 4.                                        D. 2.

Câu 7: Đường cong trong hình bên là đồ thị của một trong bốn hàm số dưới đây. Đó là hàm số nào?

A. \(y = \dfrac{{2x + 7}}{{2\left( {x + 1} \right)}}.\)

B. \(y = \dfrac{{x + 2}}{{x + 1}}.\)

C. \(y = \dfrac{{2x + 1}}{{2\left( {x + 1} \right)}}.\)

D. \(y = \dfrac{{x - 1}}{{x + 1}}.\)

Câu 8: Cho tứ diện \(ABCD.\) Điểm \(M\) thuộc đoạn \(AC\,\,\left( M \right.\) khác \(A,\,\,M\) khác \(\left. C \right).\) Mặt phẳng \(\left( \alpha  \right)\) đi qua \(M\) song song với \(AB\) và \(AD.\) Thiết diện của \(\left( \alpha  \right)\) với tứ diện \(ABCD\) là hình gì?

A. Hình tam giác.

B. Hình bình hành.

C. Hình vuông.

D. Hình chữ nhật.

Câu 9: Gieo một con súc sắc cân đối và đồng chất. Giả sử con súc sắc xuất hiện mặt \(b\) chấm. Tính xác suất sao cho phương trình \({x^2} - bx + b - 1 = 0\) (\(x\) là ẩn số) có nghiệm lớn hơn 3.

A. \(\dfrac{1}{3}.\)

B. \(\dfrac{5}{6}.\)

C. \(\dfrac{2}{3}.\)

D. \(\dfrac{1}{2}.\)

Câu 10: Mệnh đề nào dưới đây đúng?

A. \(\mathop {\lim }\limits_{x\, \to  - \,\infty } \left( {\sqrt {{x^2} + x}  - x} \right) = 0.\)

B. \(\mathop {\lim }\limits_{x\, \to \, + \,\infty } \left( {\sqrt {{x^2} + x}  - 2x} \right) =  + \,\infty .\)

C. \(\mathop {\lim }\limits_{x\, \to \, + \,\infty } \left( {\sqrt {{x^2} + x}  - x} \right) = \dfrac{1}{2}.\)

D. \(\mathop {\lim }\limits_{x\, \to \, - \,\infty } \left( {\sqrt {{x^2} + x}  - 2x} \right) =  - \,\infty .\)

ĐÁP ÁN

1. A

2. D

3. A

4. A

5. A

6. A

7. C

8. A

9. A

10. C

{-- Nội dung đề, đáp án từ câu 11-50 các em vui lòng xem ở phần xem online hoặc tải về --}

3. ĐỀ SỐ 3

Câu 1: Cho phương trình \({5^{x + 5}} = {8^x}.\) Biết phương trình có nghiệm \(x = {\log _a}{5^5},\) trong đó \(0 < a \ne 1.\) Tìm phần nguyên của \(a\).

A. 0.                                        B. 1.

C. 2.                                        D. 3.

Câu 2: Đồ thị hàm số nào dưới đây không có tiệm cận ngang?

A. \(y = \dfrac{{2 - x}}{{9 - {x^2}}}.\)

B. \(y = \dfrac{{{x^2} + x + 1}}{{3 - 2x - 5{x^2}}}.\)

C. \(y = \dfrac{{{x^2} - 3x + 2}}{{x + 1}}.\)

D. \(y = \dfrac{{x + 1}}{{x - 1}}.\)

Câu 3: Một hình trụ có bán kính đáy bằng \(r\) và khoảng cách giữa hai đáy bằng \(r\sqrt 3 \). Một hình nón có đỉnh là tâm mặt đáy này và đáy trùng với mặt đáy kia của hình trụ. Tính tỉ số diện tích xung quanh của hình trụ và hình nón.

A. \(\sqrt 3 .\)

B. \(\dfrac{1}{{\sqrt 3 }}.\)

C. \(\dfrac{1}{3}.\)

D. 3.

Câu 4: Tìm tất cả các giá trị thực của tham số \(m\) để hàm số \(y = \ln \left( {{x^2} - 2mx + 4} \right)\) xác định với mọi \(x \in \mathbb{R}.\)

A. \(m \in \left( { - \,\infty ;\, - 2} \right] \cup \left[ {2;\, + \infty } \right).\)

B. \(m \in \left[ { - \,2;\,2} \right].\)                                        

C. \(m \in \left( { - \,\infty ;\, - 2} \right) \cup \left( {2;\, + \infty } \right).\)

D. \(m \in \left( { - \,2;\,2} \right).\)

Câu 5: Hàm số nào dưới đây nghịch biến trên tập xác định của nó?

A. \(y = {\left( {\dfrac{e}{2}} \right)^x}.\)

B. \(y = {\left( {\dfrac{1}{{\sqrt 6  - \sqrt 5 }}} \right)^x}.\)

C. \(y = {\left( {\dfrac{4}{{\sqrt 3  + 2}}} \right)^x}.\)

D. \(y = {\left( {\dfrac{{\pi  + 3}}{{2\pi }}} \right)^x}.\)

Câu 6: Một khối trụ có hai đáy là hai hình tròn ngoại tiếp hai mặt của một hình lập phương cạnh \(a.\) Tính theo \(a\) thể tích \(V\) của khối trụ đó.

A. \(V = \dfrac{{\pi {a^3}}}{2}.\)

B. \(V = \dfrac{{\pi {a^3}}}{4}.\)

C. \(V = \pi {a^3}.\)

D. \(V = 2\pi {a^3}.\)

Câu 7: Tìm số nghiệm của phương trình \({\log _5}\left( {1 + {x^2}} \right) + {\log _{\dfrac{1}{3}}}\left( {1 - {x^2}} \right) = 0.\)

A. 0.                                        B. 1.

C. 2.                                        D. 3.

Câu 8: Cho hàm số \(y = f\left( x \right).\) Hàm số \(y = f'\left( x \right)\) có đồ thị như hình bên. Tìm số điểm cực trị của hàm số \(y = f\left( x \right).\)

A. 3.

B. 1.

C. 0.

D. 2.

Câu 9: Cho hai số thực dương \(a\) và \(b.\) Rút gọn biểu thức \(A = \dfrac{{{a^{\dfrac{1}{3}}}\sqrt b  + {b^{\dfrac{1}{3}}}\sqrt a }}{{\sqrt[6]{a} + \sqrt[6]{b}}}.\)

A. \(A = \sqrt[6]{{ab}}.\)

B. \(A = \sqrt[3]{{ab}}.\)

C. \(\dfrac{1}{{\sqrt[3]{{ab}}}}.\)

D. \(\dfrac{1}{{\sqrt[6]{{ab}}}}.\)

Câu 10: Cho khối hộp \(ABCD.\,A'B'C'D'.\) Tính tỉ số thể tích của khối hộp đó và khối tứ diện \(ACB'D'.\)

A. \(\dfrac{7}{3}.\)

B. 3.

C. \(\dfrac{8}{3}.\)

D. 2.

ĐÁP ÁN

1. B

2. C

3. A

4. D

5. D

6. A

7. B

8. B

9. B

10. B

{-- Nội dung đề, đáp án từ câu 11-50 các em vui lòng xem ở phần xem online hoặc tải về --}

4. ĐỀ SỐ 4

Câu 1: Tính số cách rút ra đồng thời hai con bài từ cỗ bài tú lơ khơ 52 con.

A. 26.

B. 2652.

C. 1326.

D. 104.

Câu 2: Cho lục giác đều \(ABCDEF\) tâm \(O\) như hình bên. Tam giác \(EOD\) là ảnh của tam giác \(AOF\) qua phép quay tâm \(O\) góc quay \(\alpha .\) Tìm \(\alpha .\)

A. \(\alpha  = {60^0}.\)

B. \(\alpha  =  - \,{60^0}.\)

C. \(\alpha  = {120^0}.\)

D. \(\alpha  =  - \,{120^0}.\)

Câu 3: Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = {\left( {x + 1} \right)^2}\left( {2 - x} \right)\left( {x + 3} \right).\) Mệnh đề nào dưới đây đúng?

A. Hàm số nghịch biến trên khoảng \(\left( { - \,3;\,2} \right).\)

B. Hàm số nghịch biến trên các khoảng \(\left( { - \,3;\, - 1} \right)\) và \(\left( {2;\, + \infty } \right).\)

C. Hàm số đồng biến trên các khoảng \(\left( { - \,\infty ;\, - 3} \right)\) và \(\left( {2;\, + \infty } \right).\)

D. Hàm số đồng biến trên khoảng \(\left( { - \,3;\,2} \right).\)

Câu 4: Tính thể tích \(V\) của khối lăng trụ tam giác đều có tất cả các cạnh đều bằng \(a.\)

A. \(V = \dfrac{{\sqrt 2 {a^3}}}{3}.\)

B. \(V = \dfrac{{\sqrt 2 {a^3}}}{4}.\)

C. \(V = \dfrac{{\sqrt 3 {a^3}}}{2}.\)

D. \(V = \dfrac{{\sqrt 3 {a^3}}}{4}.\)

Câu 5: Mệnh đề nào dưới đây sai?

A. Hai khối hộp chữ nhật có diện tích toàn phần bằng nhau thì có thể tích bằng nhau.

B. Hai khối lăng trụ có diện tích đáy và chiều cao tương ứng bằng nhau thì có thể tích bằng nhau.

C. Hai khối lập phương có diện tích toàn phần bằng nhau thì có thể tích bằng nhau.

D. Hai khối chóp có diện tích đáy và chiều cao tương ứng bằng nhau thì có thể tích bằng nhau.

Câu 6: Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên dưới đây.

Tìm tất cả các giá trị thực của tham số \(m\) để phương trình \(f\left( x \right) = f\left( m \right)\) có ba nghiệm phân biệt.

A. \(m \in \left( { - \,2;\,2} \right).\)

B. \(m \in \left( { - \,1;\,3} \right)\backslash \left\{ {0;\,2} \right\}.\)

C. \(m \in \left( { - \,1;\,3} \right).\)

D. \(m \in \left[ { - \,1;\,3} \right]\backslash \left\{ {0;2} \right\}.\)

Câu 7: Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) và có đồ thị là đường cong trong hình vẽ bên. Đặt \(g\left( x \right) = f\left[ {f\left( x \right)} \right].\) Tìm số nghiệm của phương trình \(g'\left( x \right) = 0.\)

A. 2.

B. 8

C. 4.

D. 6.

Câu 8: Cho tứ diện \(ABCD\) có cạnh \(AD\) vuông góc với mặt phẳng \(\left( {ABC} \right),\,\,AC = AD = 4,\,\,AB = 3,\) \(BC = 5.\) Tính khoảng cách \(d\) từ điểm \(A\) đến mặt phẳng \(\left( {BCD} \right).\)

A. \(d = \dfrac{{12}}{{\sqrt {34} }}.\)

B. \(d = \dfrac{{60}}{{\sqrt {769} }}.\)

C. \(d = \dfrac{{\sqrt {769} }}{{60}}.\)

D. \(d = \dfrac{{\sqrt {34} }}{{12}}.\)

Câu 9: Một hình hộp chữ nhật có kích thước \(a\,\left( {{\rm{cm}}} \right){\rm{ }} \times {\rm{ }}b\,\left( {{\rm{cm}}} \right){\rm{ }} \times {\rm{ }}c\,\left( {{\rm{cm}}} \right),\) trong đó \(a,\,\,b,\,\,c\) là các số nguyên và \(1 \le a \le b \le c.\) Gọi \(V\left( {c{m^3}} \right)\) và \(S\left( {c{m^2}} \right)\) lần lượt là thể tích và diện tích toàn phần của hình hộp. Biết \(V = S,\) tìm số các bộ ba số \(\left( {a,b,c} \right).\)

A. 4.

B. 10.

C. 12.

D. 21.

Câu 10: Cho hình thang cân \(ABCD\) có đáy nhỏ \(AB\) và hai cạnh bên đều có độ dài bằng 1. Tìm diện tích lớn nhất \({S_{{\rm{max}}}}\) của hình thang.

A. \({S_{{\rm{max}}}} = \dfrac{{8\sqrt 2 }}{9}\)

B. \({S_{{\rm{max}}}} = \dfrac{{4\sqrt 2 }}{9}\)

C. \({S_{{\rm{max}}}} = \dfrac{{3\sqrt 3 }}{2}\)

D. \({S_{{\rm{max}}}} = \dfrac{{3\sqrt 3 }}{4}\)

ĐÁP ÁN

1. C

2. C

3. D

4. D

5. A

6. B

7. B

8. A

9. B

10. D

{-- Nội dung đề, đáp án từ câu 11-50 các em vui lòng xem ở phần xem online hoặc tải về --}

Trên đây là trích dẫn 1 phần nội dung tài liệu Bộ 4 đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Hàm Rồng. Để xem toàn bộ nội dung các em đăng nhập vào trang hoc247.net để tải tài liệu về máy tính.

Hy vọng tài liệu này sẽ giúp các em học sinh ôn tập tốt và đạt thành tích cao trong học tập .

Các em quan tâm có thể tham khảo thêm các tài liệu cùng chuyên mục:

​Chúc các em học tập tốt !

 

NONE

ERROR:connection to 10.20.1.101:9312 failed (errno=111, msg=Connection refused)
ERROR:connection to 10.20.1.101:9312 failed (errno=111, msg=Connection refused)
AANETWORK
 

 

YOMEDIA
ATNETWORK
ON