YOMEDIA
NONE

Hoạt động 7 trang 29 SGK Toán 11 Kết nối tri thức tập 1 - KNTT

Hoạt động 7 trang 29 SGK Toán 11 Kết nối tri thức tập 1

Cho hàm số y = cot x.

a) Xét tính chẵn, lẻ của hàm số.

b) Hoàn thành bảng giá trị sau của hàm số y = cot x trên khoảng (0; π).

Bằng cách lấy nhiều điểm M(x; cot x) với x ∈ (0; π) và nối lại ta được đồ thị hàm số y = cot x trên khoảng (0; π).

 

c) Bằng cách làm tương tự câu b cho các khoảng khác có độ dài bằng chu kì T = π, ta được đồ thị của hàm số y = cot x như hình dưới đây.

Từ đồ thị ở Hình 1.17, hãy tìm tập giá trị và các khoảng nghịch biến của hàm số y = cotx.

ATNETWORK

Hướng dẫn giải chi tiết Hoạt động 7

Phương pháp giải:

Sử dụng định nghĩa hàm số chẵn lẻ

Dựa vào đồ thị để xác định tập giá trị, các khoảng đồng biến, nghịch biến của hàm số.

 

Lời giải chi tiết:

a) Hàm số y = f(x) = cot x có tập xác định là D = ℝ \ {kπ | k ∈ ℤ}.

Do đó, nếu x thuộc tập xác định D thì – x cũng thuộc tập xác định D.

Ta có: f(– x) = cot (– x) = – cot x = – f(x), ∀ x ∈ D.

Vậy y = cot x là hàm số lẻ.

b) Ta có: \(\cot \frac{\pi }{6} = \sqrt 3 ,\cot \frac{\pi }{4} = 1\)\(,\,\cot \frac{\pi }{3} = \frac{{\sqrt 3 }}{3},\cot \frac{\pi }{2} = 0\), \(\cot \frac{{2\pi }}{3} =  - \frac{{\sqrt 3 }}{3},\cot \frac{{3\pi }}{4} =  - 1,\,\cot \frac{{5\pi }}{6} =  - \sqrt 3 \).

Vậy ta hoàn thành được bảng như sau:

c) Quan sát Hình 1.17, ta thấy đồ thị hàm số y = cot x có:

+) Tập giá trị là ℝ;

+) Nghịch biến trên mỗi khoảng \(\left( {k\pi ;\,\pi  + k\pi } \right),\,k \in Z\) (do đồ thị hàm số đi xuống từ trái sang phải trên mỗi khoảng này).

-- Mod Toán 11 HỌC247

Nếu bạn thấy hướng dẫn giải Hoạt động 7 trang 29 SGK Toán 11 Kết nối tri thức tập 1 - KNTT HAY thì click chia sẻ 
YOMEDIA

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON