YOMEDIA
NONE

Bài tập 1.20 trang 18 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT

Bài tập 1.20 trang 18 SBT Toán 11 Tập 1 Kết nối tri thức

Với giá trị nào của x, mỗi đẳng thức sau đúng?

a) \(\tan x\cot x = 1\);

b) \(1 + {\tan ^2}x = \frac{1}{{{{\cos }^2}x}}\);

c) \(1 + {\cot ^2}x = \frac{1}{{{{\sin }^2}x}}\);

d) \(\tan x + \cot x = \frac{2}{{\sin 2x}}\).

ATNETWORK

Hướng dẫn giải chi tiết Bài 1.20

a) Đẳng thức \(\tan x\cot x = 1\) đúng với mọi x khi \(\tan x\) và \(\cot x\) có nghĩa, tức là:

\(\left\{ \begin{array}{l}\sin x \ne 0\\\cos x \ne 0\end{array} \right. \Leftrightarrow 2\sin x\cos x \ne 0 \Leftrightarrow \sin 2x \ne 0 \Leftrightarrow 2x \ne k\pi \Leftrightarrow x \ne k\frac{\pi }{2}(k \in \mathbb{Z}).\)

b) Đẳng thức \(1 + {\tan ^2}x = \frac{1}{{{{\cos }^2}x}}\) đúng với mọi x khi \(\cos x \ne 0\), tức là\(x \ne \frac{\pi }{2} + k\pi \,\,(k \in \mathbb{Z}).\)

c) Đẳng thức \(1 + {\cot ^2}x = \frac{1}{{{{\sin }^2}x}}\) đúng với mọi x khi \(\sin x \ne 0\), tức là: \(x \ne k\pi \,\,(k \in \mathbb{Z}).\)

d) Đẳng thức \(\tan x + \cot x = \frac{2}{{\sin 2x}}\) đúng với mọi x khi:

\(\left\{ \begin{array}{l}\sin x \ne 0\\\cos x \ne 0\end{array} \right. \Leftrightarrow 2\sin x\cos x \ne 0 \Leftrightarrow \sin 2x \ne 0 \Leftrightarrow 2x \ne k\pi \Leftrightarrow x \ne k\frac{\pi }{2}(k \in \mathbb{Z}).\)

-- Mod Toán 11 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 1.20 trang 18 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT HAY thì click chia sẻ 
YOMEDIA

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON