Bài tập 1.20 trang 18 SBT Toán 11 Tập 1 Kết nối tri thức
Với giá trị nào của x, mỗi đẳng thức sau đúng?
a) \(\tan x\cot x = 1\);
b) \(1 + {\tan ^2}x = \frac{1}{{{{\cos }^2}x}}\);
c) \(1 + {\cot ^2}x = \frac{1}{{{{\sin }^2}x}}\);
d) \(\tan x + \cot x = \frac{2}{{\sin 2x}}\).
Hướng dẫn giải chi tiết Bài 1.20
a) Đẳng thức \(\tan x\cot x = 1\) đúng với mọi x khi \(\tan x\) và \(\cot x\) có nghĩa, tức là:
\(\left\{ \begin{array}{l}\sin x \ne 0\\\cos x \ne 0\end{array} \right. \Leftrightarrow 2\sin x\cos x \ne 0 \Leftrightarrow \sin 2x \ne 0 \Leftrightarrow 2x \ne k\pi \Leftrightarrow x \ne k\frac{\pi }{2}(k \in \mathbb{Z}).\)
b) Đẳng thức \(1 + {\tan ^2}x = \frac{1}{{{{\cos }^2}x}}\) đúng với mọi x khi \(\cos x \ne 0\), tức là\(x \ne \frac{\pi }{2} + k\pi \,\,(k \in \mathbb{Z}).\)
c) Đẳng thức \(1 + {\cot ^2}x = \frac{1}{{{{\sin }^2}x}}\) đúng với mọi x khi \(\sin x \ne 0\), tức là: \(x \ne k\pi \,\,(k \in \mathbb{Z}).\)
d) Đẳng thức \(\tan x + \cot x = \frac{2}{{\sin 2x}}\) đúng với mọi x khi:
\(\left\{ \begin{array}{l}\sin x \ne 0\\\cos x \ne 0\end{array} \right. \Leftrightarrow 2\sin x\cos x \ne 0 \Leftrightarrow \sin 2x \ne 0 \Leftrightarrow 2x \ne k\pi \Leftrightarrow x \ne k\frac{\pi }{2}(k \in \mathbb{Z}).\)
-- Mod Toán 11 HỌC247
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.
Bài tập SGK khác
Bài tập 1.18 trang 18 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 1.19 trang 18 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 1.21 trang 18 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 1.22 trang 18 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 1.23 trang 18 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 1.24 trang 19 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT