Thực hành 2 trang 12 SGK Toán 10 Chân trời sáng tạo tập 2
Giải các bất phương trình bậc hai sau:
a) \(15{x^2} + 7x - 2 \le 0\)
b) \( - 2{x^2} + x - 3 < 0\)
Hướng dẫn giải chi tiết Thực hành 2
Phương pháp giải
Bước 1: Tìm nghiệm của tam thức (nếu có)
Bước 2: Xác định dấu của a
Bước 3: Xét dấu của tam thức
Lời giải chi tiết
a) Tam thức bậc hai \(f\left( x \right) = 15{x^2} + 7x - 2\) có hai nghiệm phân biệt là \({x_1} = - \frac{2}{3};{x_2} = \frac{1}{5}\)
và có \(a = 15 > 0\) nên \(f\left( x \right) \le 0\) khi x thuộc đoạn \(\left[ { - \frac{2}{3};\frac{1}{5}} \right]\)
Vậy tập nghiệm của bất phương trình \(15{x^2} + 7x - 2 \le 0\) là \(\left[ { - \frac{2}{3};\frac{1}{5}} \right]\)
b) Tam thức bậc hai \(f\left( x \right) = - 2{x^2} + x - 3\) có \(\Delta = - 23 < 0\) và \(a = - 2 < 0\)
nên \(f\left( x \right)\) âm với mọi \(x \in \mathbb{R}\)
Vậy bất phương trình \( - 2{x^2} + x - 3 < 0\) có tập nghiệm là \(\mathbb{R}\)
-- Mod Toán 10 HỌC247
-
Hãy giải thích vì sao cặp bất phương trình cho sau tương đương: \(- 4x + 1 > 0\) và \(4x - 1 <0\);
bởi Nguyễn Xuân Ngạn 11/09/2022
Theo dõi (0) 1 Trả lời
Bài tập SGK khác
Hoạt động khám phá trang 11 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Thực hành 1 trang 11 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Vận dụng trang 12 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 1 trang 12 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 2 trang 13 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 3 trang 13 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 4 trang 13 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 5 trang 13 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 1 trang 13 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 2 trang 13 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 3 trang 14 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 4 trang 14 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 5 trang 14 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 6 trang 14 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 7 trang 14 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 8 trang 14 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 9 trang 15 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 10 trang 15 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 11 trang 15 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 12 trang 15 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST