Hướng dẫn Giải bài tập Toán 10 Chân trời sáng tạo Chương 7 Bài 2 Giải bất phương trình bậc hai một ẩn giúp các em học sinh nắm vững phương pháp giải bài tập và ôn luyện tốt kiến thức.
-
Hoạt động khởi động trang 11 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Với giá trị nào của x thì tam thức bậc hai \(f\left( x \right) = 2{x^2} - 5x + 3\) mang dấu dương?
-
Hoạt động khám phá trang 11 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Lợi nhuận (I) thu được trong một ngày làm việc kinh doanh một loại gạo của cửa hàng phụ thuộc vào giá bán (x) của một kg loại gạo đó theo công thức \(I = - 3{x^2} + 200x - 2325\) với I và x được tính bằng nghìn đồng. Giá trị x như thế nào thì cửa hàng có lãi từ loại gạo đó?
-
Thực hành 1 trang 11 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Các bất phương trình nào sau đây là bất phương trình bậc hai một ẩn? Nếu là bất phương trình bậc hai một ẩn, \(x = 2\) có là nghiệm của bất phương trình đó hay không?
a) \({x^2} + x - 6 \le 0\)
b) \(x + 2 > 0\)
c) \( - 6{x^2} - 7x + 5 > 0\)
-
Thực hành 2 trang 12 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải các bất phương trình bậc hai sau:
a) \(15{x^2} + 7x - 2 \le 0\)
b) \( - 2{x^2} + x - 3 < 0\)
-
Vận dụng trang 12 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Hãy giải bất phương trình lập được trong hoạt động khám phá và tìm giá bán gạo sao cho cửa hàng có lãi.
-
Giải bài 1 trang 12 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Dựa vào đồ thị của hàm số bậc hai tương ứng, hãy xác định tập nghiệm của các bất phương trình bậc hai sau đây:
-
Giải bài 2 trang 13 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải các bất phương trình bậc hai sau:
a) \(2{x^2} - 15x + 28 \ge 0\)
b) \( - 2{x^2} + 19x + 255 > 0\)
c) \(12{x^2} < 12x - 8\)
d) \({x^2} + x - 1 \ge 5{x^2} - 3x\)
-
Giải bài 3 trang 13 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Kim muốn trồng một vườn hoa trên mảnh đất hình chữ nhật và làm hàng rào bao quanh. Kim chỉ có đủ vật liệu để làm 30 m hàng rào nhưng muốn diện tích vườn hoa ít nhất là 50 \({m^2}\). Hỏi chiều rộng của vườn hoa nằm trong khoảng nào?
-
Giải bài 4 trang 13 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Một quả bóng được ném thẳng đứng lên từ độ cao 1,6 m so với mặt đất với vận tốc là 10 m/s độ cao của bóng so với mặt đất (tính bằng mét) sau t giây được cho bởi hàm số \(h\left( t \right) = - 4,9{t^2} + 10t + 1,6\). Hỏi:
a) Bóng có thể cao trên 7 m không?
b) Bóng ở độ cao trên 5 m trong khoảng thời gian bao lâu? Làm tròn kết quả đến hàng phần trăm.
-
Giải bài 5 trang 13 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Mặt cắt ngang của mặt đường thường có hình dạng parabol để nước mưa dễ dàng thoát sang hai bên. Mặt cắt ngang của một con đường được mô tả bằng hàm số \(y = - 0,006{x^2}\) với gốc tọa độ đặt tại tim đường và đơn vị đo là mét như hình 4. Với chiều rộng của đường như thế nào thì thì tim đường cao hơn đường không quá 15 cm?
-
Giải bài 1 trang 13 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
\(x = 2\) là một nghiệm của bất phương trình nào sau đây?
a) \({x^2} - 3x + 1 > 0\)
b) \( - 4{x^2} - 3x + 5 \le 0\)
c) \(2{x^2} - 5x + 2 \le 0\)
-
Giải bài 2 trang 13 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Dựa vào đồ thị của hàm số bậc hai đã cho, hãy nêu tập nghiệm của các bất phương trình bậc hai tương ứng
-
Giải bài 3 trang 14 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải các bất phương trình bậc hai sau:
a) \( - 9{x^2} + 16x + 4 \le 0\)
b) \(6{x^2} - 13x - 33 < 0\)
c) \(7{x^2} - 36x + 5 \le 0\)
d) \( - 9{x^2} + 6x - 1 \ge 0\)
e) \(49{x^2} + 56x + 16 > 0\)
g) \( - 2{x^2} + 3x - 2 \le 0\)
-
Giải bài 4 trang 14 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải các bất phương trình bậc hai sau:
a) \({x^2} - 3x < 4\)
b) \(0 < 2{x^2} - 11x - 6\)
c) \( - 2{\left( {2x + 3} \right)^2} + 4x + 30 \le 0\)
d) \( - 3\left( {{x^2} - 4x - 1} \right) \le {x^2} - 8x + 28\)
e) \(2{\left( {x - 1} \right)^2} \ge 3{x^2} + 6x + 27\)
g) \(2{\left( {x + 1} \right)^2} + 9\left( { - x + 2} \right) < 0\)
-
Giải bài 5 trang 14 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Tìm tập xác định của các hàm số sau:
a) \(y = \sqrt {15{x^2} + 8x - 12} \)
b) \(y = \frac{{x - 1}}{{\sqrt { - 11{x^2} + 30x - 16} }}\)
c) \(y = \frac{1}{{x - 2}} - \sqrt { - {x^2} + 5x - 6} \)
d) \(y = \frac{1}{{\sqrt {2x + 1} }} - \sqrt {6{x^2} - 5x - 21} \)
-
Giải bài 6 trang 14 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Tìm giá trị của tham số m để:
a) \(x = 3\) là một nghiệm của bất phương trình \(\left( {{m^2} - 1} \right){x^2} + 2mx - 15 \le 0\)
b) \(x = - 1\) là một nghiệm của bất phương trình \(m{x^2} - 2x + 1 > 0\)
c) \(x = \frac{5}{2}\) là một nghiệm của bất phương trình \(4{x^2} + 2mx - 5m \le 0\)
d) \(x = - 2\) là một nghiệm của bất phương trình \(\left( {2m - 3} \right){x^2} - \left( {{m^2} + 1} \right)x \ge 0\)
e) \(x = m + 1\) là một nghiệm của bất phương trình \(2{x^2} + 2mx - {m^2} - 2 < 0\)
-
Giải bài 7 trang 14 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Với giá trị nào của tham số m thì:
a) Phương trình \(4{x^2} + 2\left( {m - 2} \right)x + {m^2} = 0\) có nghiệm
b) Phương trình \(\left( {m + 1} \right){x^2} + 2mx - 4 = 0\) có hai nghiệm phân biệt
c) Phương trình \(m{x^2} + \left( {m + 1} \right)x + 3m + 10 = 0\) vô nghiệm
d) Bất phương trình \(2{x^2} + \left( {m + 2} \right)x + \left( {2m - 4} \right) \ge 0\) có tập nghiệm là \(\mathbb{R}\)
e) Bất phương trình \( - 3{x^2} + 2mx + {m^2} \ge 0\) có tập nghiệm là \(\mathbb{R}\)
-
Giải bài 8 trang 14 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Lợi nhuận thu được từ việc sản xuất và bán x sản phẩm thủ công của một cửa hàng là:
\(I\left( x \right) = - 0,1{x^2} + 235x - 70000\)
Với I được tính bằng đơn vị nghìn đồng. Với số lượng sản phẩm bán ra là bao nhiêu thì cửa hàng có lãi?
-
Giải bài 9 trang 15 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Một quả bóng được nắm thẳng lên từ độ cao \({h_{_0}}\)(m) với vận tốc \({v_0}\) (m/s). Độ cao của bóng so với mặt đất (tính bằng mét) sau t (s) được cho bởi hàm số
\(h\left( t \right) = - \frac{1}{2}g{t^2} + {v_0}t + {h_0}\) với \(g = 10\) (m/s2) là gia tốc trọng tường
a) Tính \({h_{_0}}\) và \({v_0}\) biết độ cao của quả bóng sau 0,5 giây và 1 giây lần lượt là 4,75 m và 5 m.
b) Quả bóng có thể đạt được độ cao trên 4 m không? Nếu có thì trong thời gian bao lâu?
c) Cúng ném từ độ cao \({h_{_0}}\) như trên, nếu muốn độ cao của bóng sau 1 giây trong khoảng từ 2 m đến 3 m thì vận tốc ném bóng \({v_0}\) cần là bao nhiêu?
Lưu ý: Đáp số làm tròn đến hàng phần trăm.
-
Giải bài 10 trang 15 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Từ độ cao \({y_0}\) mét, một quả bóng được ném lên xiên một góc \(\alpha \) so với phương ngang với vạn tốc đầu \({v_0}\) có phương trình chuyển động
\(y = \frac{{ - g}}{{2{v_0}^2{{\cos }^2}\alpha }}{x^2} + \left( {\tan \alpha } \right)x + {y_0}\) với \(g = 10\) m/s2
a) Viết phương trình chuyển động của quả bóng nếu \(\alpha = 30^\circ ,{y_0} = 2\) m và \({v_0} = 7\)m/s
b) Để ném được quả bóng qua bức tường cao 2,5 m thì người ném phải đứng cách tường bao xa?
Lưu ý: Đáp số làm tròn đến hàng phần trăm
-
Giải bài 11 trang 15 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Một hình chữ nhật có chu vi bằng 20 cm. Để tính diện tích hình chữ nhật lớn hơn hoặc bằng 15 cm2 thì chiều rộng của hình chữ nhật nằm trong khoảng bao nhiêu?
-
Giải bài 12 trang 15 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Thiết kế của một chiếc cổng có hình parabol với chiều cao 5 m và khoảng cách giữa hai chân cổng là 4 m.
a) Chọn trục hoành là đường thẳng nối hai chân cổng, gốc tọa độ tại một chân cổng, chân cổng còn lại có hoành độ dương, đơn vị là 1 m. Hãy viết phương trình của vòm cổng.
b) Người ta cần chuyền một thùng hàng hình hộp chữ nhật với chiều cao 3 m. Chiều rộng của thùng hàng tối đa là bao nhiêu để thùng có thể chuyển lọt qua được cổng?
Lưu ý: Đáp số làm tròn đến hàng phần trăm