YOMEDIA
NONE

Thực hành 1 trang 99 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST

Thực hành 1 trang 99 SGK Toán 10 Chân trời sáng tạo tập 1

Cho tam giác đều ABC có H là trung điểm của cạnh BC. Tìm các góc:

\(\left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right),\left( {\overrightarrow {AB} ,\overrightarrow {BC} } \right),\left( {\overrightarrow {AH} ,\overrightarrow {BC} } \right),\left( {\overrightarrow {BH} ,\overrightarrow {BC} } \right),\left( {\overrightarrow {HB} ,\overrightarrow {BC} } \right)\).

ATNETWORK

Hướng dẫn giải chi tiết Thực hành 1

Phương pháp giải

Bước 1: Xác định hai vectơ cần tìm góc

Bước 2: Đưa 2 vectơ về cùng điểm đầu (chung gốc)

Bước 3: Xác định góc giữa 2 vectơ, chẳng hạn: \(\left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right) = \widehat {BAC}\)

Lời giải chi tiết

+) \(\left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right) = \widehat {ABC} = 60^\circ \)

+) Dựng hình bình hành ABCD, ta có: \(\overrightarrow {AD}  = \overrightarrow {BC} \)

\( \Rightarrow \left( {\overrightarrow {AB} ,\overrightarrow {BC} } \right) = \left( {\overrightarrow {AB} ,\overrightarrow {AD} } \right) = \widehat {BAD} = 120^\circ \)

+)Ta có: ABC là tam giác đều, là trung điểm BC nên  \(AH \bot BC\)

\(\left( {\overrightarrow {AH} ,\overrightarrow {BC} } \right) = \left( {\overrightarrow {AH} ,\overrightarrow {AD} } \right) = \widehat {HAD} = 90^\circ \)

+) Hai vectơ \(\overrightarrow {BH} \) và \(\overrightarrow {BC} \)cùng hướng nên \(\left( {\overrightarrow {BH} ,\overrightarrow {BC} } \right) = 0^\circ \)

+) Hai vectơ \(\overrightarrow {HB} \) và \(\overrightarrow {BC} \)ngược hướng nên \(\left( {\overrightarrow {HB} ,\overrightarrow {BC} } \right) = 180^\circ \)

-- Mod Toán 10 HỌC247

Nếu bạn thấy hướng dẫn giải Thực hành 1 trang 99 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST HAY thì click chia sẻ 
YOMEDIA
AANETWORK
 

 

YOMEDIA
ATNETWORK
ON