Hoạt động khám phá 2 trang 96 SGK Toán 10 Chân trời sáng tạo tập 1
Cho hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) cùng phương khác \(\overrightarrow 0 \) và cho \(\overrightarrow c = \frac{{\left| {\overrightarrow a } \right|}}{{\left| {\overrightarrow b } \right|}}.\overrightarrow b \). So sánh độ dài và hướng của hai vectơ \(\overrightarrow a \) và \(\overrightarrow c \)
Hướng dẫn giải chi tiết Hoạt động khám phá 2
Phương pháp giải
Hai vecto \(\overrightarrow a \) và \(\overrightarrow b \) (\(\overrightarrow b \) khác \(\overrightarrow 0 \))cùng phương khi và chỉ khi tồn tại \(k\) sao cho \(\overrightarrow a = k\overrightarrow b .\)
Lời giải chi tiết
\(\)vectơ \(\overrightarrow c = \frac{{\left| {\overrightarrow a } \right|}}{{\left| {\overrightarrow b } \right|}}.\overrightarrow b \) có độ dài gấp \(\frac{{\left| {\overrightarrow a } \right|}}{{\left| {\overrightarrow b } \right|}}\) lần vectơ \(\overrightarrow b \) và cùng hướng với vectơ \(\overrightarrow b \)
+) Nếu hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) cùng hướng thì hai vectơ \(\overrightarrow a \) và \(\overrightarrow c \)cùng hướng và ngược lại
+) \(\left| {\overrightarrow c } \right| = \left| {\frac{{\left| {\overrightarrow a } \right|}}{{\left| {\overrightarrow b } \right|}}.\overrightarrow b } \right| = \frac{{\left| {\overrightarrow a } \right|}}{{\left| {\overrightarrow b } \right|}}.\left| {\overrightarrow b } \right| = \left| {\overrightarrow a } \right|\). Suy ra hai vectơ \(\overrightarrow a \) và \(\overrightarrow c \)có cùng độ dài
-- Mod Toán 10 HỌC247
-
Cho tam giác \(ABC\) và điểm \(G\). Hãy chứng minh rằng: Nếu \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \) thì \(G\) là trọng tâm tam giác \(ABC\).
bởi Quynh Nhu 05/09/2022
Theo dõi (0) 1 Trả lời
Bài tập SGK khác
Thực hành 2 trang 95 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Vận dụng trang 95 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Thực hành 3 trang 96 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 1 trang 97 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 2 trang 97 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 3 trang 97 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 4 trang 97 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 5 trang 97 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 6 trang 97 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 7 trang 97 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 1 trang 96 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 2 trang 97 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 3 trang 97 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 4 trang 97 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 5 trang 97 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 6 trang 97 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST