YOMEDIA
NONE

Giải bài 4 trang 97 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 4 trang 97 SGK Toán 10 Chân trời sáng tạo tập 1

Cho tứ giác ABCD. Gọi E, F, G lần lượt là trung điểm của các đoạn thẳng AB, CD, EF. Lấy điểm M tùy ý, chứng minh rằng \(\overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC}  + \overrightarrow {MD}  = 4\overrightarrow {MG} \)

ATNETWORK

Hướng dẫn giải chi tiết Bài 4

Phương pháp giải

Sử dụng quy tắc ba điểm \(\overrightarrow {MA}  = \overrightarrow {MO}  + \overrightarrow {OA} \) và tính chất trung điểm \(\overrightarrow {OA}  + \overrightarrow {OB}  = \overrightarrow 0 \)

(với là trung điểm của AB)

Lời giải chi tiết

\(\begin{array}{l}\overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC}  + \overrightarrow {MD}  = \left( {\overrightarrow {MG}  + \overrightarrow {GE}  + \overrightarrow {EA} } \right) + \left( {\overrightarrow {MG}  + \overrightarrow {GE}  + \overrightarrow {EB} } \right)\\ + \left( {\overrightarrow {MG}  + \overrightarrow {GF}  + \overrightarrow {FC} } \right) + \left( {\overrightarrow {MG}  + \overrightarrow {GF}  + \overrightarrow {FD} } \right)\end{array}\)

\( = \left( {\overrightarrow {MG}  + \overrightarrow {MG}  + \overrightarrow {MG} \overrightarrow { + MG} } \right) + 2\left( {\overrightarrow {GE}  + \overrightarrow {GF} } \right) \\+ \left( {\overrightarrow {EA}  + \overrightarrow {EB} } \right) + \left( {\overrightarrow {FC}  + \overrightarrow {FD} } \right)\)

\( = 4\overrightarrow {MG}  + 2.\overrightarrow 0  + \overrightarrow 0  + \overrightarrow 0  = 4\overrightarrow {MG} \)  (đpcm)

-- Mod Toán 10 HỌC247

Nếu bạn thấy hướng dẫn giải Giải bài 4 trang 97 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST HAY thì click chia sẻ 
YOMEDIA

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON