YOMEDIA
NONE

Hoạt động 3 trang 45 SGK Toán 10 Cánh diều tập 1 - CD

Hoạt động 3 trang 45 SGK Toán 10 Cánh diều tập 1

a) Quan sát Hình 21 và cho biết dấu của tam thức bậc hai \(f\left( x \right) = {x^2} + 3x + 2\) tùy theo các khoảng của x.

b) Quan sát Hình 22 và cho biết dấu của tam thức bậc hai \(f\left( x \right) =  - {x^2} + 4x - 3\) tùy theo các khoảng của x.

c) Từ đó rút ra mối liên hệ về dấu của tam thức bậc hai \(f\left( x \right) = a{x^2} + bx + c\left( {a \ne 0} \right)\) với dấu của hệ số tùy theo các khoảng của x trong trường hợp \(\Delta  > 0\).

ATNETWORK

Hướng dẫn giải chi tiết Hoạt động 3

Phương pháp giải

a) Xét các khoảng \(\left( { - \infty ; - 2} \right);\left( { - 2; - 1} \right);\left( { - 1; + \infty } \right)\)

b) Xét các khoảng \(\left( { - \infty ;1} \right);\left( {1;3} \right);\left( {3; + \infty } \right)\)

c) Rút ra nhận xét.

Hướng dẫn giải

a) Ta thấy trên \(\left( { - \infty ; - 2} \right)\): Đồ thị nằm trên trục hoành

=> \(f\left( x \right) = {x^2} + 3x + 2 > 0\)\(\forall x \in \left( { - \infty ; - 2} \right)\)

Trên \(\left( { - 2; - 1} \right)\): Đồ thị nằm dưới trục hoành

=> \(f\left( x \right) = {x^2} + 3x + 2 < 0\)\(\forall x \in \left( { - 2; - 1} \right)\)

Trên \(\left( { - 1; + \infty } \right)\): Đồ thị nằm trên trục hoành

=> \(f\left( x \right) = {x^2} + 3x + 2 > 0\)\(\forall x \in \left( { - 1; + \infty } \right)\)

b)

Trên \(\left( { - \infty ;1} \right)\): Đồ thị nằm dưới trục hoành

=> \(f\left( x \right) =  - {x^2} + 4x - 3 < 0\)\(\forall x \in \left( { - \infty ;1} \right)\)

Trên \(\left( {1;3} \right)\): Đồ thị nằm trên trục hoành

=> \(f\left( x \right) =  - {x^2} + 4x - 3 > 0\)\(\forall x \in \left( {1;3} \right)\)

Trên \(\left( {3; + \infty } \right)\): Đồ thị nằm dưới trục hoành

=> \(f\left( x \right) =  - {x^2} + 4x - 3 < 0\)\(\forall x \in \left( {3; + \infty } \right)\)

c) Nếu \(\Delta  > 0\) thì \(f\left( x \right)\) cùng dấu vưới hệ số a với mọi x thuộc các khoảng \(\left( { - \infty ;{x_1}} \right)\) và \(\left( {{x_2}; + \infty } \right)\); \(f\left( x \right)\) trái dấu với hệ số a với mọi x thuộc khoảng \(\left( {{x_1};{x_2}} \right)\), trong đó \({x_1},{x_2}\) là hai nghiệm của \(f\left( x \right)\) và \({x_1} < {x_2}\).

-- Mod Toán 10 HỌC247

Nếu bạn thấy hướng dẫn giải Hoạt động 3 trang 45 SGK Toán 10 Cánh diều tập 1 - CD HAY thì click chia sẻ 
YOMEDIA
AANETWORK
 

 

YOMEDIA
ATNETWORK
ON