Hoạt động 3 trang 45 SGK Toán 10 Cánh diều tập 1
a) Quan sát Hình 21 và cho biết dấu của tam thức bậc hai \(f\left( x \right) = {x^2} + 3x + 2\) tùy theo các khoảng của x.
b) Quan sát Hình 22 và cho biết dấu của tam thức bậc hai \(f\left( x \right) = - {x^2} + 4x - 3\) tùy theo các khoảng của x.
c) Từ đó rút ra mối liên hệ về dấu của tam thức bậc hai \(f\left( x \right) = a{x^2} + bx + c\left( {a \ne 0} \right)\) với dấu của hệ số tùy theo các khoảng của x trong trường hợp \(\Delta > 0\).
Hướng dẫn giải chi tiết Hoạt động 3
Phương pháp giải
a) Xét các khoảng \(\left( { - \infty ; - 2} \right);\left( { - 2; - 1} \right);\left( { - 1; + \infty } \right)\)
b) Xét các khoảng \(\left( { - \infty ;1} \right);\left( {1;3} \right);\left( {3; + \infty } \right)\)
c) Rút ra nhận xét.
Hướng dẫn giải
a) Ta thấy trên \(\left( { - \infty ; - 2} \right)\): Đồ thị nằm trên trục hoành
=> \(f\left( x \right) = {x^2} + 3x + 2 > 0\)\(\forall x \in \left( { - \infty ; - 2} \right)\)
Trên \(\left( { - 2; - 1} \right)\): Đồ thị nằm dưới trục hoành
=> \(f\left( x \right) = {x^2} + 3x + 2 < 0\)\(\forall x \in \left( { - 2; - 1} \right)\)
Trên \(\left( { - 1; + \infty } \right)\): Đồ thị nằm trên trục hoành
=> \(f\left( x \right) = {x^2} + 3x + 2 > 0\)\(\forall x \in \left( { - 1; + \infty } \right)\)
b)
Trên \(\left( { - \infty ;1} \right)\): Đồ thị nằm dưới trục hoành
=> \(f\left( x \right) = - {x^2} + 4x - 3 < 0\)\(\forall x \in \left( { - \infty ;1} \right)\)
Trên \(\left( {1;3} \right)\): Đồ thị nằm trên trục hoành
=> \(f\left( x \right) = - {x^2} + 4x - 3 > 0\)\(\forall x \in \left( {1;3} \right)\)
Trên \(\left( {3; + \infty } \right)\): Đồ thị nằm dưới trục hoành
=> \(f\left( x \right) = - {x^2} + 4x - 3 < 0\)\(\forall x \in \left( {3; + \infty } \right)\)
c) Nếu \(\Delta > 0\) thì \(f\left( x \right)\) cùng dấu vưới hệ số a với mọi x thuộc các khoảng \(\left( { - \infty ;{x_1}} \right)\) và \(\left( {{x_2}; + \infty } \right)\); \(f\left( x \right)\) trái dấu với hệ số a với mọi x thuộc khoảng \(\left( {{x_1};{x_2}} \right)\), trong đó \({x_1},{x_2}\) là hai nghiệm của \(f\left( x \right)\) và \({x_1} < {x_2}\).
-- Mod Toán 10 HỌC247
-
Hãy xét dấu các tam thức bậc hai: \({x^2} +12x+36\);
bởi Hữu Nghĩa 28/08/2022
Theo dõi (0) 1 Trả lời
Bài tập SGK khác
Hoạt động 1 trang 44 SGK Toán 10 Cánh diều tập 1 - CD
Hoạt động 2 trang 45 SGK Toán 10 Cánh diều tập 1 - CD
Luyện tập 1 trang 46 SGK Toán 10 Cánh diều tập 1 - CD
Luyện tập 2 trang 46 SGK Toán 10 Cánh diều tập 1 - CD
Giải bài 1 trang 48 SGK Toán 10 Cánh diều tập 1 - CD
Giải bài 2 trang 48 SGK Toán 10 Cánh diều tập 1 - CD
Giải bài 3 trang 48 SGK Toán 10 Cánh diều tập 1 - CD
Giải bài 4 trang 48 SGK Toán 10 Cánh diều tập 1 - CD
Giải bài 5 trang 48 SGK Toán 10 Cánh diều tập 1 - CD
Giải bài 20 trang 52 SBT Toán 10 Cánh diều tập 1 - CD
Giải bài 21 trang 52 SBT Toán 10 Cánh diều tập 1 - CD
Giải bài 22 trang 52 SBT Toán 10 Cánh diều tập 1 - CD
Giải bài 23 trang 52 SBT Toán 10 Cánh diều tập 1 - CD
Giải bài 24 trang 52 SBT Toán 10 Cánh diều tập 1 - CD
Giải bài 25 trang 52 SBT Toán 10 Cánh diều tập 1 - CD