Giải bài 26 trang 52 SBT Toán 10 Cánh diều tập 1
Tìm tất cả giá trị của \(m\) để hàm số \(y = \frac{1}{{\sqrt {{x^2} - 4x + 6m - 1} }}\) có tập xác định là \(\mathbb{R}\).
Hướng dẫn giải chi tiết Bài 26
Phương pháp giải
\(\frac{1}{{\sqrt {f(x)} }}\) xác định khi \(f(x) > 0\)
Tam thức \(f\left( x \right) = a{x^2} + bx + c > 0\;\forall x \in \mathbb{R} \Leftrightarrow \left\{ \begin{array}{l}a > 0\\\Delta < 0\end{array} \right.\)
Lời giải chi tiết
Hàm số \(y = \frac{1}{{\sqrt {{x^2} - 4x + 6m - 1} }}\) xác định khi \({x^2} - 4x + 6m - 1 > 0\)
Do đó, hàm số có tập xác định là \(\mathbb{R}\)\( \Leftrightarrow {x^2} - 4x + 6m - 1 > 0\)\(\forall x \in \mathbb{R}\)
\( \Leftrightarrow \left\{ \begin{array}{l}a > 0\\\Delta < 0\end{array} \right.\) (*)
Mà \(a = 1 > 0,\Delta = {\left( { - 4} \right)^2} - 4.1.\left( {6m - 1} \right) = - 24m + 20\)
Do đó \((*) \Leftrightarrow - 24m + 20 < 0 \Leftrightarrow m > \frac{5}{6}\)
Vậy \(m > \frac{5}{6}\)
-- Mod Toán 10 HỌC247
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.