Giải bài 23 trang 52 SBT Toán 10 Cánh diều tập 1
Lập bảng xét dấu mỗi tam thức bậc hai sau:
a) \(f\left( x \right) = 3{x^2} - 7x + 4\)
b) \(f\left( x \right) = 25{x^2} + 10x + 1\)
c) \(f\left( x \right) = 3{x^2} - 2x + 8\)
d) \(f\left( x \right) = - 2{x^2} + x + 3\)
e) \(f\left( x \right) = - 3{x^2} + 6x - 3\)
g) \(f\left( x \right) = - 5{x^2} + 2x - 4\)
Hướng dẫn giải chi tiết Bài 23
Phương pháp giải
Cho tam thức bậc hai \(f\left( x \right) = a{x^2} + bx + c\left( {a \ne 0} \right),\Delta = {b^2} - 4ac\)
+ Nếu \(\Delta < 0\) thì \(f\left( x \right)\) cùng dấu với hệ số \(a\) với mọi \(x \in \mathbb{R}\)
+ Nếu \(\Delta = 0\) thì \(f\left( x \right)\) cùng dấu với hệ số \(a\) với mọi \(x \in \mathbb{R}\backslash \left\{ {\frac{{ - b}}{{2a}}} \right\}\)
+ Nếu \(\Delta > 0\) thì \(f\left( x \right)\) có hai nghiệm \({x_1},{x_2}\left( {{x_1} < {x_2}} \right)\). Khi đó:
Lời giải chi tiết
a) \(f\left( x \right) = 3{x^2} - 7x + 4\) có hai nghiệm \({x_1} = 1;{x_2} = \frac{4}{3}\) và có hệ số \(a = 3 > 0\)
Ta có bảng xét dấu của \(f\left( x \right)\) như sau:
b) \(f\left( x \right) = 25{x^2} + 10x + 1\) có nghiệm kép \({x_0} = \frac{{ - 1}}{5}\) và có hệ số \(a = 25 > 0\)
Ta có bảng xét dấu của \(f\left( x \right)\) như sau:
c) \(f\left( x \right) = 3{x^2} - 2x + 8\) vô nghiệm và có hệ số \(a = 3 > 0\)
Ta có bảng xét dấu của \(f\left( x \right)\) như sau:
d) \(f\left( x \right) = - 2{x^2} + x + 3\) có hai nghiệm \({x_1} = - 1;{x_2} = \frac{3}{2}\) và có hệ số \(a = - 2 < 0\)
Ta có bảng xét dấu của \(f\left( x \right)\) như sau:
e) \(f\left( x \right) = - 3{x^2} + 6x - 3\) có nghiệm kép \({x_0} = 1\) và có hệ số \(a = - 3 < 0\)
Ta có bảng xét dấu của \(f\left( x \right)\) như sau:
g) \(f\left( x \right) = - 5{x^2} + 2x - 4\) vô nghiệm và có hệ số \(a = - 5 < 0\)
Ta có bảng xét dấu của \(f\left( x \right)\) như sau:
-- Mod Toán 10 HỌC247
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.